Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 39(13): 2815-26, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15993920

RESUMO

The ability of Garcinia cambogia, an indigenous plant found in many parts of India, to remove trivalent arsenic from solution was assessed. Batch experiments were carried out to characterize the As(III) removal capability of fresh and immobilized biomass of G. cambogia. It was found that the kinetic property and uptake capacity of fresh biomass were significantly enhanced by the immobilization procedure. The uptake of As(III) by fresh and immobilized biomass was not greatly affected by solution pH with optimal biosorption occurring at around pH 6--8. The presence of common ions such as Ca and Mg at concentrations up to 100mg/l had no effect on As(III) removal. However, the presence of Fe(III) at 100mg/l caused a noticeable drop in the extent of As(III) removal but the effect was minimal when Fe(III) was present at 10mg/l. The adsorption isotherms quantitatively predicted the extent of As(III) removal in groundwater samples collected from an arsenic-contaminated site in India. Immobilized biomass loaded with As(III) was amenable to efficient regeneration with NaOH solution. Column studies showed that immobilized biomass could be reused over five cycles of loading and elution. The excellent As(III) sequestering capability of fresh and immobilized G. cambogia biomass could lead to the development of a viable and cost-effective technology for arsenic removal in groundwater.


Assuntos
Arsênio/isolamento & purificação , Garcinia cambogia , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Biomassa , Citratos/química , Concentração de Íons de Hidrogênio , Índia , Hidróxido de Sódio/química
2.
Anal Bioanal Chem ; 353(2): 176-82, 1995 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15048536

RESUMO

ICP-MS has been used for the determination of over 30 geochemically significant trace elements (Sc, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Cs, Ba, Hf, Ta, Pb, Th, U and REEs) in anorthosites and related rock reference samples. Open acid digestion, pressure decomposition using HF, HNO(3) and HClO(4), and a fusion method using lithium metaborate and subsequent dissolution in dil. HNO(3) were adopted for the decomposition of these rock samples before analysis. The dissolution problems and interference effects are discussed. Rh and Bi were used as internal standards. The first set of data on several rare earths and other trace elements in the Russian anorthosite reference sample, MO-6 are presented along with data on other samples. The data are compared with the available data. The results obtained with different dissolution methods were found to be in good agreement for the majority of the trace elements. The accuracy and precision achieved (better than 6% RSD in most cases) suggested that the data obtained by ICP-MS for such samples are best suited for geochemical interpretations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...