Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biotechnol ; 64(6): 702-710, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35099707

RESUMO

Despite iron-based nanoparticles gaining huge attraction in various field of sciences and technology, their application rises ecological concerns due to lack of studies on their interaction with microbial cells populations and communities, such as biofilms. In this study, Chlorella vulgaris cells were employed as a model of aquatic microalgae to investigate the impacts of L-lysine-coated iron oxide nanoparticles (lys@IONPs) on microalgal growth and biofilm formation. In this regard, C. vulgaris cells were exposed to different concentrations of lys@IONPs and the growth of cells was evaluated by OD600 and biofilm formation was analyzed using crystal violet staining throughout 12 days. It was revealed that low concentration of nanoparticles (< 400 µg/mL) can promote cell growth and biofilm formation. However, higher concentrations have an adverse effect on microalgal communities. It is interesting that microalgal growth and biofilm are concentration- and exposure time-dependent to lys@IONPs. Over long period (~ 12 days) exposure to high concentrations of nanoparticles, cells can adapt with the condition, so growth was raised and biofilm started to develop. Results of the present study could be considered in ecological issues and also bioprocesses using microalgal cells.


Assuntos
Chlorella vulgaris , Microalgas , Nanopartículas , Biofilmes , Lisina , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas/química
2.
Opt Lett ; 46(4): 765-768, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33577509

RESUMO

We propose to use exceptional points (EPs) to construct diffraction-free beam propagation and localized power oscillation in lattices. We specifically consider two systems to utilize EPs for diffraction-free beam propagation, one in synthetic gauge lattices and the other in unidirectionally coupled resonators where each resonator individually is capable of creating orbital angular momentum (OAM) beams. In the second system, we introduce the concept of robust and tunable OAM beam propagation in discrete lattices. We show that one can create robust OAM beams in an arbitrary number of sites of a photonic lattice. Furthermore, we report power oscillation at the EP of a non-Hermitian lattice. Our research widens the study and application of EPs in different photonic systems including OAM beams and their associated dynamics in discrete lattices.

3.
Bioengineered ; 11(1): 141-153, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31994978

RESUMO

Cell immobilization on the magnetic nanoparticles (MNPs) and magnetic harvesting is a novel approach for microalgal cells separation. To date, the effect of these nanoparticles on microalgal cells was only studied over a short period of time. More studies are hence needed for a better understanding of the magnetic harvesting proposes or environmental concerns relating to long-term exposure to nanoparticles. In this study, the impact of various concentrations of MNPs on the microalgal cells growth and their metabolic status was investigated over 12 days. More than 60% reduction in mitochondrial activity and pigments (chlorophyll a, chlorophyll b, and carotenoids) content occurred during the first 6 days of exposure to ≥50 µg/mL nanoparticles. However, more than 50% growth inhibitory effect was seen at concentrations higher than 400 µg/mL. Exposure to MNPs gradually induced cellular adaptation and after about 6 days of exposure to stress generating concentrations (˂400 µg/mL) of IONs, microalgae could overcome the imposed damages. This work provides a better understanding regarding the environmental impact of MNPs and appropriate concentrations of these particles for future algal cells magnetic immobilization and harvesting.


Assuntos
Chlorella vulgaris/química , Nanopartículas/química , Células Imobilizadas/química , Células Imobilizadas/metabolismo , Chlorella vulgaris/crescimento & desenvolvimento , Chlorella vulgaris/metabolismo , Clorofila/análise , Clorofila/metabolismo , Clorofila A/análise , Clorofila A/metabolismo , Fenômenos Magnéticos , Microalgas/química , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo
5.
Phys Rev Lett ; 122(5): 050404, 2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30821988

RESUMO

We introduce a class of non-Hermitian Hamiltonians that offers a dynamical approach to a shortcut to adiabaticity (DASA). In particular, in our proposed 2×2 Hamiltonians, one eigenvalue is absolutely real and the other one is complex. This specific form of eigenvalues helps us to exponentially decay the population in an undesired eigenfunction or amplify the population in the desired state while keeping the probability amplitude in the other eigenfunction conserved. This provides us with a powerful method to have a diabatic process with the same outcome as its corresponding adiabatic process. In contrast to standard shortcuts to adiabaticity, our Hamiltonians have a much simpler form with a lower thermodynamic cost. Furthermore, we show that DASA can be extended to higher dimensions using the parameters associated with our 2×2 Hamiltonians. Our proposed Hamiltonians not only have application in DASA but also can be used for tunable mode selection and filtering in acoustics, electronics, and optics.

6.
Phys Rev Lett ; 121(4): 046101, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30095926

RESUMO

Asymmetric light transport has significantly contributed to fundamental science and revolutionized advanced technology in various aspects such as unidirectional photonic devices, optical diodes, and isolators. While metasurfaces mold wave fronts at will with an ultrathin flat optical element, asymmetric transport of light cannot be fundamentally achieved by any linear system including linear metasurfaces. We report asymmetric transport of free-space light at nonlinear metasurfaces upon transmission and reflection. Moreover, we theoretically derive the nonlinear generalized Snell's laws that were experimentally confirmed by the anomalous nonlinear refraction and reflection. The asymmetric transport at optically thin nonlinear interfaces is revealed by the concept of a reversed propagation path. Such an asymmetric transport at metasurfaces opens a new paradigm for free-space ultrathin lightweight optical devices with one-way operation including unrivaled optical valves and diodes.

7.
Chemphyschem ; 19(20): 2782-2787, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29993169

RESUMO

Unique properties of lead chalcogenides have enabled multiple exciton generation (MEG) in their nanocrystals that can be beneficial in enhancing the efficiency of third-generation solar cells. Although the intrinsic electric field plays an imperative role in a solar cell, its effect on the multiple exciton generation (MEG) has been overlooked, so far. Using EOM-CCSD as a many-body approach, we show that any electric field can affect the absorptivity spectra of the lead chalcogenide nanocrystals (Pb4 Te4 , Pb4 Se4 , and Pb4 S4 ). The same electric field, however, has insignificant effects on the MEG quantum probabilities and the thresholds in these nanocrystals. Furthermore, simulations show that Pb4 Te4 , among the aforementioned nanocrystals, has the lowest MEG threshold and the strongest absorptivity peak that is located in the multi-excitation window, irrespective of the field strength, making it the most suitable candidate for MEG applications. Simulations also demonstrate that an electric field affects the MEG characteristics in the Pb4 Te4 nanocrystal, in general, less than it perturbs MEG characteristics in Pb4 Se4 and Pb4 S4 nanocrystals. Our results can have a great impact in designing optoelectronic devices whose performance can be significantly influenced by MEG.

8.
Phys Rev Lett ; 120(4): 043901, 2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29437419

RESUMO

We demonstrate that it is possible to localize photons nonreciprocally in a moving photonic lattice made by spatiotemporally modulating the atomic response, where the dispersion acquires a spectral Doppler shift with respect to the probe direction. A static defect placed in such a moving lattice produces a spatial localization of light in the band gap with a shifting frequency that depends on the direction of incident field with respect to the moving lattice. This phenomenon has an impact not only in photonics but also in broader areas such as condensed matter and acoustics, opening the doors for designing new devices such as compact isolators, circulators, nonreciprocal traps, sensors, unidirectional tunable filters, and possibly even a unidirectional laser.

9.
Nat Commun ; 7: 11110, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-27025443

RESUMO

Parity-time (PT) symmetric systems experience phase transition between PT exact and broken phases at exceptional point. These PT phase transitions contribute significantly to the design of single mode lasers, coherent perfect absorbers, isolators, and diodes. However, such exceptional points are extremely difficult to access in practice because of the dispersive behaviour of most loss and gain materials required in PT symmetric systems. Here we introduce a method to systematically tame these exceptional points and control PT phases. Our experimental demonstration hinges on an active acoustic element that realizes a complex-valued potential and simultaneously controls the multiple interference in the structure. The manipulation of exceptional points offers new routes to broaden applications for PT symmetric physics in acoustics, optics, microwaves and electronics, which are essential for sensing, communication and imaging.

10.
Opt Lett ; 40(9): 2138-41, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25927805

RESUMO

We utilize caustic theory in PT-symmetric lattices to design focusing and curved beam dynamics. We show that the gain and loss parameter in these systems provides an additional degree of freedom that allows for the design of the same caustics trajectories with different intensity distribution in the individual waveguides. Moreover we can create aberration-free focal points at any paraxial distance z(f), with anomalously large focal intensity.

11.
Phys Rev Lett ; 113(26): 263905, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25615339

RESUMO

We propose a class of spectral singularities emerging from the coincidence of two independent singularities with highly directional responses. These spectral singularities result from resonance trapping induced by the interplay between parity-time symmetry and Fano resonances. At these singularities, while the system is reciprocal in terms of a finite transmission, a simultaneous infinite reflection from one side and zero reflection from the opposite side can be realized.

12.
Opt Express ; 20(24): 26200-7, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23187475

RESUMO

We demonstrate that the interplay of a magneto-optical layer sandwiched between two judiciously balanced gain and loss layers which are both birefringent with misaligned in-plane anisotropy, induces unidirectional electromagnetic modes. Embedding one such optically active non-reciprocal unit between a pair of birefringent Bragg reflectors, results in an exceptionally strong asymmetry in light transmission. Remarkably, such asymmetry persists regardless of the incident light polarization. This photonic architecture may be used as the building block for chip-scale non-reciprocal devices such as optical isolators and circulators.


Assuntos
Simulação por Computador , Desenho Assistido por Computador , Luz , Modelos Teóricos , Dispositivos Ópticos , Refratometria/instrumentação , Espalhamento de Radiação , Anisotropia , Birrefringência , Desenho de Equipamento , Humanos , Fótons
13.
Phys Rev Lett ; 109(3): 033902, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22861852

RESUMO

We show that complex PT-symmetric photonic lattices can lead to a new class of self-imaging Talbot effects. For this to occur, we find that the input field pattern has to respect specific periodicities dictated by the symmetries of the system. While at the spontaneous PT-symmetry breaking point the image revivals occur at Talbot lengths governed by the characteristics of the passive lattice, at the exact phase it depends on the gain and loss parameter, thus allowing one to control the imaging process.

14.
Phys Rev Lett ; 106(21): 213901, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21699297

RESUMO

Parity-time (PT) symmetric periodic structures, near the spontaneous PT-symmetry breaking point, can act as unidirectional invisible media. In this regime, the reflection from one end is diminished while it is enhanced from the other. Furthermore, the transmission coefficient and phase are indistinguishable from those expected in the absence of a grating. The phenomenon is robust even in the presence of Kerr nonlinearities, and it can also effectively suppress optical bistabilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...