Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 191(3): 141, 2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30734086

RESUMO

Preoxidation is an important unit process which can partially remove organic and microbial contaminations. Due to the high concentrations of organic matter entering the water treatment plant, originating from surface water resources, preoxidation by using chlorinated compounds may increase the possibility of trihalomethane (THM) formation. Therefore, in order to reduce the concentration of THMs, different alternatives such as injection of potassium permanganate are utilized. The present study attempts to investigate the efficiency of the microbial removal from raw water entering the water treatment plant No. 1 in Mashhad, Iran, through various doses of potassium permanganate. Then, an examination of the predictive models is done in order to indicate the residual Escherichia coli and total coliform resulted from injecting the potassium permanganate. Finally, the coefficients of the proposed models were optimized using the genetic algorithm. The results of the study show that 0.5 mg L-1 of potassium permanganate would remove 50% of total coliform as well as 80% of Escherichia coli in the studied water treatment plant. Also, assessing the performance of different models in predicting the residual microbial concentration after injection of potassium permanganate suggests the Gaussian model as the one resulting the highest conformity. Moreover, it can be concluded that employing smart models leads to an optimization of the injected potassium permanganate at the levels of 27% and 73.5%, for minimum and maximum states during different seasons of a year, respectively.


Assuntos
Modelos Teóricos , Permanganato de Potássio/metabolismo , Poluição Química da Água/estatística & dados numéricos , Purificação da Água/métodos , Biodegradação Ambiental , Monitoramento Ambiental , Irã (Geográfico) , Oxidantes , Oxirredução , Permanganato de Potássio/análise , Trialometanos , Água , Microbiologia da Água , Poluentes Químicos da Água/análise , Purificação da Água/estatística & dados numéricos
2.
PLoS One ; 13(6): e0199441, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29953471

RESUMO

Systematic reviews are increasingly using data from preclinical animal experiments in evidence networks. Further, there are ever-increasing efforts to automate aspects of the systematic review process. When assessing systematic bias and unit-of-analysis errors in preclinical experiments, it is critical to understand the study design elements employed by investigators. Such information can also inform prioritization of automation efforts that allow the identification of the most common issues. The aim of this study was to identify the design elements used by investigators in preclinical research in order to inform unique aspects of assessment of bias and error in preclinical research. Using 100 preclinical experiments each related to brain trauma and toxicology, we assessed design elements described by the investigators. We evaluated Methods and Materials sections of reports for descriptions of the following design elements: 1) use of comparison group, 2) unit of allocation of the interventions to study units, 3) arrangement of factors, 4) method of factor allocation to study units, 5) concealment of the factors during allocation and outcome assessment, 6) independence of study units, and 7) nature of factors. Many investigators reported using design elements that suggested the potential for unit-of-analysis errors, i.e., descriptions of repeated measurements of the outcome (94/200) and descriptions of potential for pseudo-replication (99/200). Use of complex factor arrangements was common, with 112 experiments using some form of factorial design (complete, incomplete or split-plot-like). In the toxicology dataset, 20 of the 100 experiments appeared to use a split-plot-like design, although no investigators used this term. The common use of repeated measures and factorial designs means understanding bias and error in preclinical experimental design might require greater expertise than simple parallel designs. Similarly, use of complex factor arrangements creates novel challenges for accurate automation of data extraction and bias and error assessment in preclinical experiments.


Assuntos
Projetos de Pesquisa , Pesquisadores , Pesquisa , Animais , Lesões Encefálicas Traumáticas , Bases de Dados Factuais , Humanos , Modelos Animais , Acidente Vascular Cerebral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...