Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cogn Neurodyn ; 17(2): 523-536, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37007192

RESUMO

Synchronization plays a key role in learning and memory by facilitating the communication between neurons promoted by synaptic plasticity. Spike-timing-dependent plasticity (STDP) is a form of synaptic plasticity that modifies the strength of synaptic connections between neurons based on the coincidence of pre- and postsynaptic spikes. In this way, STDP simultaneously shapes the neuronal activity and synaptic connectivity in a feedback loop. However, transmission delays due to the physical distance between neurons affect neuronal synchronization and the symmetry of synaptic coupling. To address the question that how transmission delays and STDP can jointly determine the emergent pairwise activity-connectivity patterns, we studied phase synchronization properties and coupling symmetry between two bidirectionally coupled neurons using both phase oscillator and conductance-based neuron models. We show that depending on the range of transmission delays, the activity of the two-neuron motif can achieve an in-phase/anti-phase synchronized state and its connectivity can attain a symmetric/asymmetric coupling regime. The coevolutionary dynamics of the neuronal system and the synaptic weights due to STDP stabilizes the motif in either one of these states by transitions between in-phase/anti-phase synchronization states and symmetric/asymmetric coupling regimes at particular transmission delays. These transitions crucially depend on the phase response curve (PRC) of the neurons, but they are relatively robust to the heterogeneity of transmission delays and potentiation-depression imbalance of the STDP profile.

2.
PLoS One ; 16(9): e0257228, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34506579

RESUMO

Synaptic strengths between neurons in brain networks are highly adaptive due to synaptic plasticity. Spike-timing-dependent plasticity (STDP) is a form of synaptic plasticity induced by temporal correlations between the firing activity of neurons. The development of experimental techniques in recent years enabled the realization of brain-inspired neuromorphic devices. Particularly, magnetic tunnel junctions (MTJs) provide a suitable means for the implementation of learning processes in molecular junctions. Here, we first considered a two-neuron motif subjected to STDP. By employing theoretical analysis and computer simulations we showed that the dynamics and emergent structure of the motif can be predicted by introducing an effective two-neuron synaptic conductance. Then, we considered a phenyl-based single-molecule MTJ connected to two ferromagnetic (FM) cobalt electrodes and investigated its electrical properties using the non-equilibrium Green's function (NEGF) formalism. Similar to the two-neuron motif, we introduced an effective spin-polarized conductance in the MTJ. Depending on the polarity, frequency and strength of the bias voltage applied to the MTJ, the system can learn input signals by adaptive changes of the effective conductance. Interestingly, this voltage-dependent plasticity is an intrinsic property of the MTJ where its behavior is reminiscent of the classical temporally asymmetric STDP. Furthermore, the shape of voltage-dependent plasticity in the MTJ is determined by the molecule-electrode coupling strength or the length of the molecule. Our results may be relevant for the development of single-molecule devices that capture the adaptive properties of synapses in the brain.


Assuntos
Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Potenciais de Ação/fisiologia , Algoritmos , Humanos , Modelos Neurológicos
3.
Sci Rep ; 11(1): 8958, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33903663

RESUMO

Charge transfer characteristics of single-molecule junctions at the nanoscale, and consequently, their thermoelectric properties can be dramatically tuned by chemical or conformational modification of side groups or anchoring groups. In this study, we used density functional theory (DFT) combined with the non-equilibrium Green's function (NEGF) formalism in the linear response regime to examine the thermoelectric properties of a side-group-mediated anthracene molecule coupled to gold (Au) electrodes via anchoring groups. In order to provide a comparative inspection three different side groups, i.e. amine, nitro and methyl, in two different positions were considered for the functionalization of the molecule terminated with thiol or isocyanide anchoring groups. We showed that when the anchored molecule is perturbed with side group, the peaks of the transmission spectrum were shifted relative to the Fermi energy in comparison to the unperturbed molecule (i.e. without side group) leading to modified thermoelectric properties of the system. Particularly, in the thiol-terminated molecule the amine side group showed the greatest figure of merit in both positions which was suppressed by the change of side group position. However, in the isocyanide-terminated molecule the methyl side group attained the greatest thermoelectric efficiency where its magnitude was relatively robust to the change of side group position. In this way, different combinations of side groups and anchoring groups can improve or suppress thermopower and the figure of merit of the molecular junction depending on the interplay between charge donating/accepting nature of the functionals or their position.

4.
Sci Rep ; 10(1): 10922, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616835

RESUMO

Density functional theory (DFT) and the non-equilibrium Green's function (NEGF) formalism in the linear response regime were employed to investigate the impact of doping on the electronic and phononic transport properties in an anthracene molecule attached to two metallic zigzag graphene nanoribbons (ZGNRs). Boron (B) and nitrogen (N) atoms were used for doping and co-doping (NB) of carbon atoms located at the edge of the anthracene molecule. Our results show that B doping enhances the electronic transport in comparison with the other dopants which is due to its ability to increase the binding energy of the system. The chemical doping of the anthracene molecule mainly impacts on the thermopower which results in a significantly enhanced electronic contribution of the figure of merit. On the contrary, considering the effect of phononic thermal conductance suppresses the figure of merit. However, by taking into account the effect of both electron and phonon contributions to the thermal conductance, we find that the thermoelectric efficiency can be improved by B doping. The potential role of the phononic thermal conductance in shaping the thermoelectric properties of molecular junctions has been ignored in numerous studies, however, our findings demonstrate its importance for a realistic and accurate estimation of the thermoelectric figure of merit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...