Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38826196

RESUMO

Cryptococcus is a genus of saprophytic fungi with global distribution. Two species complexes, C. neoformans and C. gattii, pose health risks to humans and animals. Cryptococcal infections result from inhalation of aerosolized spores and/or desiccated yeasts from terrestrial reservoirs such as soil, trees, and avian guano. More recently, C. gattii has been implicated in infections in marine mammals, suggesting that inhalation of liquid droplets or aerosols from the air-water interface is also an important, yet understudied, mode of respiratory exposure. Water transport has also been suggested to play a role in the spread of C. gattii from tropical to temperate environments. However, the dynamics of fungal survival, persistence, and transport via water have not been fully studied. The size of the cryptococcal capsule was previously shown to reduce cell density and increase buoyancy. Here, we demonstrate that cell buoyancy is also impacted by the salinity of the media in which cells are suspended, with formation of a halocline interface significantly slowing the rate of settling of cryptococcal cells through water, resulting in persistence of C. neoformans within 1 cm of the air-water interface for over 60 min and C. gattii for 4-6 h. Our data also showed that during culture in yeast peptone dextrose media (YPD), polysaccharide accumulating in the supernatant formed a raft that augmented buoyancy and further slowed settling of cryptococcal cells. These findings illustrate new mechanisms by which cryptococcal cells may persist in aquatic environments, with important implications for aqueous transport and pathogen exposure.

2.
bioRxiv ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38260475

RESUMO

Cryptococcus neoformans is a fungal pathogen that causes cryptococcosis mostly in immune compromised patients, such as those with HIV/AIDS. One survival mechanism of C. neoformans during infection is melanin production, which catalyzed by laccase, and protects fungal cells against immune attack. Hence comparative assessment of laccase activity is useful for characterizing cryptococcal strains. We serendipitously observed that culturing C. neoformans with food coloring resulted in the degradation of some dyes with phenolic structures. Consequently, we investigated the color changes for the food dyes metabolized by C. neoformans laccase and explored using this effect for the development of a colorimetric assay to measure laccase activity. We developed several versions of a food dye based colorimetric laccase assay that can be used to compare the relative laccase activities between different C. neoformans strains. We found that phenolic color degradation was glucose dependent, which may reflect changes in the reduction properties of the media. Our food color based colorimetric assay has several advantages over the commonly used 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay for laccase activity, including lower cost, irreversibility, and does not require constant monitoring. This method has potential applications to bioremediation of water pollutants in addition to its use in determining laccase virulence factor expression.

3.
PLoS Pathog ; 18(7): e1010697, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35816543

RESUMO

The fungus Cryptococcus neoformans is a major human pathogen with a remarkable intracellular survival strategy that includes exiting macrophages through non-lytic exocytosis (Vomocytosis) and transferring between macrophages (Dragotcytosis) by a mechanism that involves sequential events of non-lytic exocytosis and phagocytosis. Vomocytosis and Dragotcytosis are fungal driven processes, but their triggers are not understood. We hypothesized that the dynamics of Dragotcytosis could inherit the stochasticity of phagolysosome acidification and that Dragotcytosis was triggered by fungal cell stress. Consistent with this view, fungal cells involved in Dragotcytosis reside in phagolysosomes characterized by low pH and/or high oxidative stress. Using fluorescent microscopy, qPCR, live cell video microscopy, and fungal growth assays we found that the that mitigating pH or oxidative stress reduced Dragotcytosis frequency, whereas ROS susceptible mutants of C. neoformans underwent Dragotcytosis more frequently. Dragotcytosis initiation was linked to phagolysosomal pH, oxidative stresses, and macrophage polarization state. Dragotcytosis manifested stochastic dynamics thus paralleling the dynamics of phagosomal acidification, which correlated with the inhospitality of phagolysosomes in differently polarized macrophages. Hence, randomness in phagosomal acidification randomly created a population of inhospitable phagosomes where fungal cell stress triggered stochastic C. neoformans non-lytic exocytosis dynamics to escape a non-permissive intracellular macrophage environment.


Assuntos
Anti-Infecciosos , Criptococose , Cryptococcus neoformans , Criptococose/microbiologia , Humanos , Concentração de Íons de Hidrogênio , Macrófagos/microbiologia , Fagocitose , Fagossomos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...