Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 62017 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-28315524

RESUMO

To build a coherent view of the external world, an organism needs to integrate multiple types of sensory information from different sources, a process known as multisensory integration (MSI). Previously, we showed that the temporal dependence of MSI in the optic tectum of Xenopus laevis tadpoles is mediated by the network dynamics of the recruitment of local inhibition by sensory input (Felch et al., 2016). This was one of the first cellular-level mechanisms described for MSI. Here, we expand this cellular level view of MSI by focusing on the principle of inverse effectiveness, another central feature of MSI stating that the amount of multisensory enhancement observed inversely depends on the size of unisensory responses. We show that non-linear summation of crossmodal synaptic responses, mediated by NMDA-type glutamate receptor (NMDARs) activation, form the cellular basis for inverse effectiveness, both at the cellular and behavioral levels.


Assuntos
Percepção Auditiva/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia , Larva/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Colículos Superiores/fisiologia , Percepção Visual/fisiologia , Estimulação Acústica , Animais , Rede Nervosa/fisiologia , Estimulação Luminosa , Colículos Superiores/anatomia & histologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Xenopus laevis
2.
Front Neural Circuits ; 10: 95, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27932957

RESUMO

The neural circuits in the optic tectum of Xenopus tadpoles are selectively responsive to looming visual stimuli that resemble objects approaching the animal at a collision trajectory. This selectivity is required for adaptive collision avoidance behavior in this species, but its underlying mechanisms are not known. In particular, it is still unclear how the balance between the recurrent spontaneous network activity and the newly arriving sensory flow is set in this structure, and to what degree this balance is important for collision detection. Also, despite the clear indication for the presence of strong recurrent excitation and spontaneous activity, the exact topology of recurrent feedback circuits in the tectum remains elusive. In this study we take advantage of recently published detailed cell-level data from tadpole tectum to build an informed computational model of it, and investigate whether dynamic activation in excitatory recurrent retinotopic networks may on its own underlie collision detection. We consider several possible recurrent connectivity configurations and compare their performance for collision detection under different levels of spontaneous neural activity. We show that even in the absence of inhibition, a retinotopic network of quickly inactivating spiking neurons is naturally selective for looming stimuli, but this selectivity is not robust to neuronal noise, and is sensitive to the balance between direct and recurrent inputs. We also describe how homeostatic modulation of intrinsic properties of individual tectal cells can change selectivity thresholds in this network, and qualitatively verify our predictions in a behavioral experiment in freely swimming tadpoles.


Assuntos
Comportamento Animal/fisiologia , Homeostase/fisiologia , Modelos Biológicos , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Processamento Espacial/fisiologia , Colículos Superiores/fisiologia , Animais , Larva , Xenopus
3.
J Neurosci ; 35(7): 3218-29, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25698756

RESUMO

Autism spectrum disorder (ASD) is increasingly thought to result from low-level deficits in synaptic development and neural circuit formation that cascade into more complex cognitive symptoms. However, the link between synaptic dysfunction and behavior is not well understood. By comparing the effects of abnormal circuit formation and behavioral outcomes across different species, it should be possible to pinpoint the conserved fundamental processes that result in disease. Here we use a novel model for neurodevelopmental disorders in which we expose Xenopus laevis tadpoles to valproic acid (VPA) during a critical time point in brain development at which neurogenesis and neural circuit formation required for sensory processing are occurring. VPA is a commonly prescribed antiepileptic drug with known teratogenic effects. In utero exposure to VPA in humans or rodents results in a higher incidence of ASD or ASD-like behavior later in life. We find that tadpoles exposed to VPA have abnormal sensorimotor and schooling behavior that is accompanied by hyperconnected neural networks in the optic tectum, increased excitatory and inhibitory synaptic drive, elevated levels of spontaneous synaptic activity, and decreased neuronal intrinsic excitability. Consistent with these findings, VPA-treated tadpoles also have increased seizure susceptibility and decreased acoustic startle habituation. These findings indicate that the effects of VPA are remarkably conserved across vertebrate species and that changes in neural circuitry resulting from abnormal developmental pruning can cascade into higher-level behavioral deficits.


Assuntos
Anticonvulsivantes/efeitos adversos , Deficiências do Desenvolvimento/induzido quimicamente , Ácido Valproico/efeitos adversos , Animais , Animais Geneticamente Modificados , Aprendizagem da Esquiva/efeitos dos fármacos , Convulsivantes/toxicidade , Dendritos/efeitos dos fármacos , Dendritos/patologia , Deficiências do Desenvolvimento/fisiopatologia , Modelos Animais de Doenças , Reação de Fuga/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/farmacologia , Habituação Psicofisiológica/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Pentilenotetrazol/toxicidade , Reflexo de Sobressalto/efeitos dos fármacos , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/fisiologia , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/patologia , Colículos Superiores/efeitos dos fármacos , Colículos Superiores/patologia , Transtornos da Visão/etiologia , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...