Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35454608

RESUMO

Photo-catalysts based on titanium dioxide, and modified with highly dispersed metallic nanoparticles of Au, Ag, Pd and Pt, either mono- or bi-metallic, have been analyzed by multiple characterization techniques, including XRD, XPS, SEM, EDX, UV-Vis and N2 adsorption/desorption. Mono-metallic photo-catalysts were prepared by wet impregnation, while bi-metallic photocatalysts were obtained via deposition-precipitation (DP). The relationship between the physico-chemical properties and the catalyst's behavior for various photo-synthetic processes, such as carbon dioxide photo-reduction to liquid products and glucose photo-reforming to hydrogen have been investigated. Among the tested materials, the catalysts containing platinum alone (i.e., 0.1 mol% Pt/TiO2) or bi-metallic gold-containing materials (e.g., 1 wt% (AuxAgy)/TiO2 and 1 wt% (AuxPtz)/TiO2) showed the highest activity, presenting the best results in terms of productivity and conversion for both applications. The textural, structural and morphological properties of the different samples being very similar, the main parameters to improve performance were function of the metal as electron sink, together with optoelectronic properties. The high activity in both applications was related to the low band gap, that allows harvesting more energy from a polychromatic light source with respect to the bare TiO2. Overall, high selectivity and productivity were achieved with respect to most literature data.

2.
Ind Eng Chem Res ; 61(8): 2963-2972, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35264822

RESUMO

The CO2 photoreduction is a promising way to convert one of the most abundant greenhouse gases to valuable chemicals. The photoreduction in the liquid phase is limited by the low solubility of CO2 in water, but this point is overcome here by using an innovative photoreactor, which allows one to work up to pressures of 20 bar, improving the overall productivity. The photoreduction was performed in the presence of Na2SO3 and using in primis commercial titanium dioxide (P25) and a set of titania catalysts functionalized by surface deposition of either monometallic or bimetallic cocatalysts. The gaseous products were hydrogen and traces of CO, while, in the liquid phase, formic acid/formate, formaldehyde and methanol were quantitatively detected. The pH was observed to shift the products distribution. A neutral environment led mainly to hydrogen and methanol, while, at pH 14, formate was the most abundant compound. The trend for monometallic cocatalysts showed enhanced productivity when using noble metals (i.e., gold and platinum). In order to limit the cost of the catalytic material, bimetallic cocatalysts were explored, adding titania with Au+Ag or Au+Pt. This may open to the possibility of performing the reaction with a smaller amount of the most expensive metals. In the end, we have expressed some conclusions on the cost of the photocatalysts here employed, to support the overall feasibility assessment of the process.

3.
Materials (Basel) ; 14(3)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572587

RESUMO

Flame spray pyrolysis was used to produce nanosized Ni-based catalysts starting from different mixed oxides. LaNiO3 and CeNiO3 were used as base materials and the formulation was varied by mixing them or incorporating variable amounts of ZrO2 or SrO during the synthesis. The catalysts were tested for the steam reforming of glycerol. One of the key problems for this application is the resistance to deactivation by sintering and coking, which may be increased by (1) improving Ni dispersion through the production of a Ni-La or Ni-Ce mixed oxide precursor, and then reduced; (2) using an oxide as ZrO2, which established a strong interaction with Ni and possesses high thermal resistance; (3) decreasing the surface acidity of ZrO2 through a basic promoter/support, such as La2O3; and (4) adding a promoter/support with very high oxygen mobility such as CeO2. A further key feature is the use of a high temperature synthesis, such as flame spray pyrolysis, to improve the overall thermal resistance of the oxides. These strategies proved effective to obtain active and stable catalysts at least for 20 h on stream with very limited coke formation.

4.
Materials (Basel) ; 13(18)2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911756

RESUMO

A series of poly(lactic acid) (PLA) and poly(lactic acid)-based bio-composites (sisal PLA) were prepared and studied by spectroscopic and microscopic techniques as such and after immersion at room temperature in different degradation mediums (i.e., distilled and natural sea water and solutions at pH = 2, 6, and 8). In these conditions, some of their macroscopic and microscopic properties were monitored during a period of 30 days. Water absorption increased with the increasing fiber content regardless of the immersion medium. The maximum water absorption was achieved at pH = 8 (~16%), indicating a more severe action of the alkaline mediums on the samples. The diffusivity, D, of PLA decreased with the addition of fibers and acidic mediums showed higher D, indicating higher diffusivity of water through the specimens with respect to those submerged in moderate or alkaline mediums. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analysis evidenced a weak interaction between the PLA matrix and the sisal fibers. Very limited degradation phenomena occur in our conditions: Despite some changes in the microstructure, the PLA backbone seems to be largely resistant to hydrolysis, almost regardless of the pH value and even at the highest sisal content.

5.
Materials (Basel) ; 12(6)2019 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-30884805

RESUMO

The deposition of V-based catalysts for the oxidative dehydrogenation of propane to propene on cordierite honeycomb monoliths was optimised as a strategy to decrease the contact time in a structured reactor with respect to a conventional fixed bed one. 10 wt% VOx supported over SiO2 or Al2O3 were used as catalysts, deposed over the monolith using silica or alumina as primer, respectively. Both the alumina supported catalyst and the bohemite primer precursor were effectively deposed by dip-coating from stable powder suspensions, whereas insufficient adhesion was obtained when loading pre-synthesised SiO2 over the cordierite. A new method based on sol-gel production of SiO2 from tetraethylortosilicate (TEOS) over the monolith surface was set up. A correlation was derived for the prevision of the amount of silica deposed depending on the amount of TEOS. Both primer and catalyst loading were optimised as for uniformity and stability of the coating and resulted 0.5⁻1 wt % primer and 0.15 wt % of catalyst. Activity testing confirmed the strong improvement of propene productivity by increasing the time factor (i.e. Ncm³ of flowing reactant/min gcat), which ended in a one order of magnitude increase of productivity for the honeycomb-supported samples with respect to the fixed bed configuration.

6.
Mater Sci Eng C Mater Biol Appl ; 70(Pt 1): 721-727, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27770947

RESUMO

The interaction of aminoacids (Glycine, Proline, Lysine) with brushite based bone cements has been investigated by several techniques (FTIR spectroscopy, Thermogravimetry-TG, Scanning Electron Microscopy-SEM, mechanical properties studies), with the aim to elucidate the properties of the resulting composite materials and the interaction occurring at molecular level between the inorganic matrix and the organic moieties. Brushite phase is predominantly obtained also in the presence of aminoacids added during preparation of the bone cement. Focusing on Glycine incorporation, the presence of a fraction of bulk Glycine, weakly interacting with the inorganic matrix, together with Glycine specifically interacting with adsorption sites can be envisaged, as pointed out by FT IR and thermogravimetric data. In detail, FT-IR data evidenced changes in shape and position of bands associated to stretching modes of the carboxylic groups in Glycine structure, which can be explained by the coordination of these functional groups with the Ca ions in the matrix. Heating this composite at controlled temperature results in the detection of a condensation products, either cyclic condensation product, either dipeptide. Diffuse and not specific H-bonding seems to be the main form of interaction of Proline and Lysine with brushite. Due to the coordination with Ca ions here described, Glycine can act as retardant during brushite preparation, allowing good workability of the resulting composite.


Assuntos
Aminoácidos/química , Fosfatos de Cálcio/química , Glicina/química , Ligação de Hidrogênio , Lisina/química , Microscopia Eletrônica de Varredura , Prolina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Termogravimetria
7.
Phys Chem Chem Phys ; 15(37): 15645-59, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23942769

RESUMO

PLLs were synthesized by the ring-opening polycondensation (ROP) method using α-L-leucine N-carboxyanhydride (NCA) and initialized by triethylamine (Et3N), water or rehydrated hydrotalcite (HTrus). The role of temperature, different initiators and water in ROP was further investigated. In general, the initiators used in the polymerization reaction lead to PLL alpha-helical chains containing 5-40 monomers with NCA endgroups via a monomer-activated mechanism. However, the water has a twofold effect on ROP, as both a nucleophile and a base, which involves competition between two different types of initiating mechanisms (nucleophilic attack or deprotonation of the NCA monomer) in the polymerization reaction. This competition provides as a main product NCA endgroups with an alpha-helical structure and leads to the formation of the PLL cyclic-chains and beta-sheet structures which reduce the polymer Mw and the PD of the polypeptide. Furthermore, the water can hydrolyze the NCA endgroups resulting in PLL alpha-helical chains that contain living groups as the main product. On the other hand, the HTrus presents a double role: as both an initiator and a support. The polymers synthesized in the presence of HTrus presented a HT-carboxylate endgroup. The PLLs immobilized in HTrus through an anion-exchange method performed for just 30 minutes presented the PLL immobilized in the interlayer space of the HTrus. The PLL chains of the immobilized counterpart are stabilized by H-bonding with the M-OH of the HT structure. All the polypeptides and biohybrid materials synthesized have been characterized using different techniques (EA, ICP, XRD, Raman, MALDI-TOF, ESI-TOF, FT-IR at increasing temperatures, TG/DT analyses and TEM).


Assuntos
Hidróxido de Alumínio/química , Hidróxido de Magnésio/química , Peptídeos/síntese química , Etilaminas/química , Leucina/análogos & derivados , Leucina/química , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...