Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(2): 935-951, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36610787

RESUMO

Eukaryotic life benefits from-and ofttimes critically relies upon-the de novo biosynthesis and supply of vitamins and micronutrients from bacteria. The micronutrient queuosine (Q), derived from diet and/or the gut microbiome, is used as a source of the nucleobase queuine, which once incorporated into the anticodon of tRNA contributes to translational efficiency and accuracy. Here, we report high-resolution, substrate-bound crystal structures of the Sphaerobacter thermophilus queuine salvage protein Qng1 (formerly DUF2419) and of its human ortholog QNG1 (C9orf64), which together with biochemical and genetic evidence demonstrate its function as the hydrolase releasing queuine from queuosine-5'-monophosphate as the biological substrate. We also show that QNG1 is highly expressed in the liver, with implications for Q salvage and recycling. The essential role of this family of hydrolases in supplying queuine in eukaryotes places it at the nexus of numerous (patho)physiological processes associated with queuine deficiency, including altered metabolism, proliferation, differentiation and cancer progression.


Assuntos
Chloroflexi , Glicosídeo Hidrolases , Nucleosídeo Q , Humanos , Guanina/metabolismo , Micronutrientes , Nucleosídeo Q/metabolismo , Proteínas , RNA de Transferência/metabolismo , Glicosídeo Hidrolases/química , Chloroflexi/enzimologia
2.
Genet Resour Crop Evol ; 69(8): 2623-2643, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159774

RESUMO

Sugarcane (Saccharum spp.) is a special crop plant that underwent anthropogenic evolution from a wild grass species to an important food, fodder, and energy crop. Unlike any other grass species which were selected for their kernels, sugarcane was selected for its high stem sucrose accumulation. Flowering in sugarcane is not favored since flowering diverts the stored sugar resources for the reproductive and developmental energy needs. Cultivars are vegetatively propagated and sugarcane breeding is still essentially focused on conventional methods, since the knowledge of sugarcane genetics has lagged that of other major crops. Cultivar improvement has been extremely challenging due to its polyploidy and aneuploidy nature derived from a few interspecific hybridizations between Saccharum officinarum and Saccharum spontaneum, revealing the coexistence of two distinct genome organization modes in the modern variety. Alongside implementation of modern agricultural techniques, generation of hybrid clones, transgenics and genome edited events will help to meet the ever-growing bioenergy needs. Additionally, there are two common biotechnological approaches to improve plant stress tolerance, which includes marker-assisted selection (MAS) and genetic transformation. During the past two decades, the use of molecular approaches has contributed greatly to a better understanding of the genetic and biochemical basis of plant stress-tolerance and in some cases, it led to the development of plants with enhanced tolerance to abiotic stress. Hence, this review mainly intends on the events that shaped the sugarcane as what it is now and what challenges ahead and measures taken to further improve its yield, production and maximize utilization to beat the growing demands.

3.
J Genet Eng Biotechnol ; 19(1): 124, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34420115

RESUMO

BACKGROUND: Phospholipases hydrolyze glycerophospholipids and generate diverse lipid-derived molecules with secondary messenger activity. Out of these, phospholipase C (PLC) specifically cleaves the phospholipids at ester linkages and yields diacylglycerol (DAG) and phosphorylated head groups. PLCs are classified further as phosphatidylinositol-specific PLCs (PI-PLCs) and non-specific PLCs with biased specificity for phosphatidylcholine (NPC/PC-PLC). RESULTS: In the present report, we identified and characterized PLC genes in the genomes of three orchids, Phalaenopsis equestris (seven PePLCs), Dendrobium catenatum (eight DcPLCs), and Apostasia shenzhenica (seven AsPLCs). Multiple sequence alignment analysis confirmed the presence of conserved X and Y catalytic domains, calcium/lipid-binding domain (C2 domain) at the C terminal region, and EF-hand at the N-terminal region in PI-PLC proteins and esterase domain in PC-PLC. Systematic phylogenetic analysis established the relationship of the PLC protein sequences and clustered them into two groups (PI-PLC and PC-PLC) along with those of Arabidopsis thaliana and Oryza sativa. Gene architecture studies showed the presence of nine exons in all PI-PLC genes while the number varied from one to five in PC-PLCs. RNA-seq-based spatio-temporal expression profile for PLC genes was generated, which showed that PePC-PLC1, PePC-PLC2A, DcPC-PLC1A, DcPC-PLC1B, DcPC-PLC2, DcPC-PLC1B, and AsPC-PLC1 had significant expression in all reproductive and vegetative tissues. The expression profile is matched to their upstream cis-regulatory promoter elements, which indicates that PLC genes have a role in various growth and development processes and during stress responses. CONCLUSIONS: The present study unwrapped the opportunity for functional characterization of selected PLC genes in planta for plant improvement.

4.
Methods Mol Biol ; 2124: 39-68, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32277448

RESUMO

Plant genetic transformation is an important technological advancement in modern science, which has not only facilitated gaining fundamental insights into plant biology but also started a new era in crop improvement and commercial farming. However, for many crop plants, efficient transformation and regeneration still remain a challenge even after more than 30 years of technical developments in this field. Recently, FokI endonuclease-based genome editing applications in plants offered an exciting avenue for augmenting crop productivity but it is mainly dependent on efficient genetic transformation and regeneration, which is a major roadblock for implementing genome editing technology in plants. In this chapter, we have outlined the major historical developments in plant genetic transformation for developing biotech crops. Overall, this field needs innovations in plant tissue culture methods for simplification of operational steps for enhancing the transformation efficiency. Similarly, discovering genes controlling developmental reprogramming and homologous recombination need considerable attention, followed by understanding their role in enhancing genetic transformation efficiency in plants. Further, there is an urgent need for exploring new and low-cost universal delivery systems for DNA/RNA and protein into plants. The advancements in synthetic biology, novel vector systems for precision genome editing and gene integration could potentially bring revolution in crop-genetic potential enhancement for a sustainable future. Therefore, efficient plant transformation system standardization across species holds the key for translating advances in plant molecular biology to crop improvement.


Assuntos
Técnicas Genéticas/história , Plantas/genética , Transformação Genética , Biolística , Edição de Genes , História do Século XX , Plantas Geneticamente Modificadas
5.
Physiol Mol Biol Plants ; 21(1): 151-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25648206

RESUMO

We studied transgene silencing in two transgenic rice plants, OSM25 and COT-OSM4, which harboured two different types of right border (RB)-centered inverted transferred DNA (T-DNA) repeats (IRs). The T-DNA in OSM25 has three genes gus, OSM and hph, all under the transcriptional control of the Cauliflower mosaic virus 35S promoter (P35S). The gus gene, which is proximal to the RB, is in a convergent orientation of transcription in the IR. OSM25 displayed silencing of all three transgenes. Nuclear run-on transcription analysis revealed that silencing of gus, OSM and hph genes in OSM25 operates at the transcriptional level. P35S showed hypermethylation in OSM25 plants. COT-OSM4 has P35S-driven gus and hph genes in its T-DNA. The hph gene, which is proximal to the RB, is in a divergent orientation of transcription in the IR. Unlike in OSM25, the transgenes in COT-OSM4 showed no silencing. These findings show that convergent orientation of transcription of a gene at the origin of an IR is important for transgene silencing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...