Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37994719

RESUMO

Individuals with PhDs and postdoctoral experience in the life sciences can pursue a variety of career paths. Many PhD students and postdocs aspire to a permanent research position at a university or research institute, but competition for such positions has increased. Here, we report a time-resolved analysis of the career paths of 2284 researchers who completed a PhD or a postdoc at the European Molecular Biology Laboratory (EMBL) between 1997 and 2020. The most prevalent career outcome was Academia: Principal Investigator (636/2284=27.8% of alumni), followed by Academia: Other (16.8%), Science-related Non-research (15.3%), Industry Research (14.5%), Academia: Postdoc (10.7%) and Non-science-related (4%); we were unable to determine the career path of the remaining 10.9% of alumni. While positions in Academia (Principal Investigator, Postdoc and Other) remained the most common destination for more recent alumni, entry into Science-related Non-research, Industry Research and Non-science-related positions has increased over time, and entry into Academia: Principal Investigator positions has decreased. Our analysis also reveals information on a number of factors - including publication records - that correlate with the career paths followed by researchers.


Assuntos
Escolha da Profissão , Pessoal de Saúde , Humanos , Estudantes , Academias e Institutos , Pesquisadores , Educação de Pós-Graduação
2.
Autophagy ; 18(3): 496-517, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34130600

RESUMO

Primary dysfunction of autophagy due to Mendelian defects affecting core components of the autophagy machinery or closely related proteins have recently emerged as an important cause of genetic disease. This novel group of human disorders may present throughout life and comprises severe early-onset neurodevelopmental and more common adult-onset neurodegenerative disorders. Early-onset (or congenital) disorders of autophagy often share a recognizable "clinical signature," including variable combinations of neurological, neuromuscular and multisystem manifestations. Structural CNS abnormalities, cerebellar involvement, spasticity and peripheral nerve pathology are prominent neurological features, indicating a specific vulnerability of certain neuronal populations to autophagic disturbance. A typically biphasic disease course of late-onset neurodegeneration occurring on the background of a neurodevelopmental disorder further supports a role of autophagy in both neuronal development and maintenance. Additionally, an associated myopathy has been characterized in several conditions. The differential diagnosis comprises a wide range of other multisystem disorders, including mitochondrial, glycogen and lysosomal storage disorders, as well as ciliopathies, glycosylation and vesicular trafficking defects. The clinical overlap between the congenital disorders of autophagy and these conditions reflects the multiple roles of the proteins and/or emerging molecular connections between the pathways implicated and suggests an exciting area for future research. Therapy development for congenital disorders of autophagy is still in its infancy but may result in the identification of molecules that target autophagy more specifically than currently available compounds. The close connection with adult-onset neurodegenerative disorders highlights the relevance of research into rare early-onset neurodevelopmental conditions for much more common, age-related human diseases.Abbreviations: AC: anterior commissure; AD: Alzheimer disease; ALR: autophagic lysosomal reformation; ALS: amyotrophic lateral sclerosis; AMBRA1: autophagy and beclin 1 regulator 1; AMPK: AMP-activated protein kinase; ASD: autism spectrum disorder; ATG: autophagy related; BIN1: bridging integrator 1; BPAN: beta-propeller protein associated neurodegeneration; CC: corpus callosum; CHMP2B: charged multivesicular body protein 2B; CHS: Chediak-Higashi syndrome; CMA: chaperone-mediated autophagy; CMT: Charcot-Marie-Tooth disease; CNM: centronuclear myopathy; CNS: central nervous system; DNM2: dynamin 2; DPR: dipeptide repeat protein; DVL3: disheveled segment polarity protein 3; EPG5: ectopic P-granules autophagy protein 5 homolog; ER: endoplasmic reticulum; ESCRT: homotypic fusion and protein sorting complex; FIG4: FIG4 phosphoinositide 5-phosphatase; FTD: frontotemporal dementia; GBA: glucocerebrosidase; GD: Gaucher disease; GRN: progranulin; GSD: glycogen storage disorder; HC: hippocampal commissure; HD: Huntington disease; HOPS: homotypic fusion and protein sorting complex; HSPP: hereditary spastic paraparesis; LAMP2A: lysosomal associated membrane protein 2A; MEAX: X-linked myopathy with excessive autophagy; mHTT: mutant huntingtin; MSS: Marinesco-Sjoegren syndrome; MTM1: myotubularin 1; MTOR: mechanistic target of rapamycin kinase; NBIA: neurodegeneration with brain iron accumulation; NCL: neuronal ceroid lipofuscinosis; NPC1: Niemann-Pick disease type 1; PD: Parkinson disease; PtdIns3P: phosphatidylinositol-3-phosphate; RAB3GAP1: RAB3 GTPase activating protein catalytic subunit 1; RAB3GAP2: RAB3 GTPase activating non-catalytic protein subunit 2; RB1: RB1-inducible coiled-coil protein 1; RHEB: ras homolog, mTORC1 binding; SCAR20: SNX14-related ataxia; SENDA: static encephalopathy of childhood with neurodegeneration in adulthood; SNX14: sorting nexin 14; SPG11: SPG11 vesicle trafficking associated, spatacsin; SQSTM1: sequestosome 1; TBC1D20: TBC1 domain family member 20; TECPR2: tectonin beta-propeller repeat containing 2; TSC1: TSC complex subunit 1; TSC2: TSC complex subunit 2; UBQLN2: ubiquilin 2; VCP: valosin-containing protein; VMA21: vacuolar ATPase assembly factor VMA21; WDFY3/ALFY: WD repeat and FYVE domain containing protein 3; WDR45: WD repeat domain 45; WDR47: WD repeat domain 47; WMS: Warburg Micro syndrome; XLMTM: X-linked myotubular myopathy; ZFYVE26: zinc finger FYVE-type containing 26.


Assuntos
Transtorno do Espectro Autista , Demência Frontotemporal , Doenças Neurodegenerativas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Transtorno do Espectro Autista/metabolismo , Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Transporte , Retículo Endoplasmático/metabolismo , Flavoproteínas/metabolismo , Demência Frontotemporal/metabolismo , Glicogênio/metabolismo , Humanos , Lisossomos/metabolismo , Proteínas do Tecido Nervoso , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas/metabolismo , ATPases Vacuolares Próton-Translocadoras , Proteínas de Transporte Vesicular , Proteínas rab3 de Ligação ao GTP
3.
PLoS One ; 12(8): e0181844, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28797124

RESUMO

Parkinson's disease (PD) is a progressive and currently incurable neurological disorder characterised by the loss of midbrain dopaminergic neurons and the accumulation of aggregated alpha-synuclein (a-syn). Oligomeric a-syn is proposed to play a central role in spreading protein aggregation in the brain with associated cellular toxicity contributing to a progressive neurological decline. For this reason, a-syn oligomers have attracted interest as therapeutic targets for neurodegenerative conditions such as PD and other alpha-synucleinopathies. In addition to strategies using small molecules, neutralisation of the toxic oligomers by antibodies represents an attractive and highly specific strategy for reducing disease progression. Emerging active immunisation approaches using vaccines are already being trialled to induce such antibodies. Here we propose a novel vaccine based on the RNA bacteriophage (Qbeta) virus-like particle conjugated with short peptides of human a-syn. High titres of antibodies were successfully and safely generated in wild-type and human a-syn over-expressing (SNCA-OVX) transgenic mice following vaccination. Antibodies from vaccine candidates targeting the C-terminal regions of a-syn were able to recognise Lewy bodies, the hallmark aggregates in human PD brains. Furthermore, antibodies specifically targeted oligomeric and aggregated a-syn as they exhibited 100 times greater affinity for oligomeric species over monomer a-syn proteins in solution. In the SNCA-OVX transgenic mice used, vaccination was, however, unable to confer significant changes to oligomeric a-syn bioburden. Similarly, there was no discernible effect of vaccine treatment on behavioural phenotype as compared to control groups. Thus, antibodies specific for oligomeric a-syn induced by vaccination were unable to treat symptoms of PD in this particular mouse model.


Assuntos
Doença de Parkinson/prevenção & controle , Peptídeos/uso terapêutico , Agregação Patológica de Proteínas/prevenção & controle , RNA Viral/uso terapêutico , Vacinas/uso terapêutico , alfa-Sinucleína/antagonistas & inibidores , Animais , Afinidade de Anticorpos , Bacteriófagos/química , Bacteriófagos/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doença de Parkinson/imunologia , Doença de Parkinson/metabolismo , Peptídeos/química , Peptídeos/imunologia , Agregação Patológica de Proteínas/imunologia , Agregação Patológica de Proteínas/metabolismo , RNA Viral/química , RNA Viral/imunologia , Vacinas/química , Vacinas/imunologia , Vírion/química , Vírion/imunologia , alfa-Sinucleína/química , alfa-Sinucleína/imunologia , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...