Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 130: 104187, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33454534

RESUMO

It is well known that numerical simulations of the cardiac monodomain model require fine mesh resolution, which increases the computational resources required. In this paper, we construct three operator-splitting alternating direction implicit (ADI) schemes to efficiently solve the nonlinear cardiac monodomain model. The main objective of the proposed methods is to reduce the computational time and memory consumed for solving electrocardiology models, compared to standard numerical methods. The proposed methods have second-order accuracy in both space and time while evaluating the ionic model only once per time-step. Several examples using regular wave, spiral wave reentry, and nonsymmetrical scroll wave are conducted, and the efficiency of the proposed ADI methods is compared to the standard semi-implicit Crank-Nicolson/Adams-Bashforth method. Large-scale two- and three-dimensional simulations are performed.


Assuntos
Algoritmos , Coração , Simulação por Computador , Dinâmica não Linear
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...