Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Pathol Toxicol Oncol ; 41(2): 37-46, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35695650

RESUMO

The rapid transmission of COVID-19 infection around the world in a brief timeframe has caused an exponential decline in street traffic and other industrial activities in various parts of the world. The confined human collaboration with the nature at the time of this emergency has shown up as an advantage for Mother Nature after COVID-19 flare because the air present in the atmosphere and water flowing in river streams is upgrading and untamed life is blossoming. India, being consistently seen as the center of contamination due to a tremendous population, overwhelming road traffic and industries which contribute to heavy pollution prompting rise in air quality index for almost all the big cities of the country. However, after the announcement of lockdown because of COVID-19, the air quality begun to upgrade and other environmental variables, for example, water quality in streams and waterways have begun offering a positive hint towards restoration. This review gives a brief knowledge on the structure and genomic organization of novel coronavirus as well as it focuses on alterations in air and water quality along with its environmental consequences at specific locations of the country during lockdown due to this pandemic circumstance.


Assuntos
Poluentes Atmosféricos , COVID-19 , Poluentes Atmosféricos/análise , COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Índia/epidemiologia , Pandemias , Material Particulado/análise , SARS-CoV-2
2.
Sci Rep ; 9(1): 11384, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31388042

RESUMO

The present study investigates the hydrothermal liquefaction (HTL) of harmful green macroalgal blooms at a temperature of 270 °C with, and without a catalyst with a holding time of 45 min. The effect of different catalysts on the HTL product yield was also studied. Two separation methods were used for recovering the biocrude oil yield from the solid phase. On comparision with other catalyst, Na2CO3 was found to produce higher yiled of bio-oil. The total bio-oil yield was 20.10% with Na2CO3, 18.74% with TiO2, 17.37% with CaO, and 14.6% without a catalyst. The aqueous phase was analyzed for TOC, COD, TN, and TP to determine the nutrient enrichment of water phase for microalgae cultivation. Growth of four microalgae strains viz., Chlorella Minutissima, Chlorella sorokiniana UUIND6, Chlorella singularis UUIND5 and Scenedesmus abundans in the aqueous phase were studied, and compared with a standard growth medium. The results indicate that harmful macroalgal blooms are a suitable feedstock for HTL, and its aqueous phase offers a promising nutrient source for microalgae.


Assuntos
Biocombustíveis , Carbonatos/química , Proliferação Nociva de Algas , Microbiologia Industrial/métodos , Microalgas/metabolismo , Biomassa , Catálise , Temperatura Alta , Nutrientes/metabolismo , Microbiologia da Água
3.
Biotechnol Rep (Amst) ; 22: e00340, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31080765

RESUMO

Cell disruption and lipid extraction methods for macroalgae are not well reported. Therefore, we compared various lipid extraction methods and extraction efficiency of various solvents to improve lipid yields from Oedogonium fresh water macroalgae. Lipid extraction was done by 2 methods viz., modified Bligh and Dyer method and soxhlet extraction using either single solvents or mixtures. In soxhlet extraction method five solvents were used (1) Hexane commonly used solvent for lipid extractions, (2) chloroform: methanol (2:1), (3) Chloroform: hexane (1:1), (4) Chloroform: hexane (1:2), (5) Dichloromethane + methanol (2:1). To improve lipid extraction yields, various cell disruption methods were also compared during the present study. Impurities of chlorophyll and protein were also detected in the extracted lipids. Hydrothermal liquefaction of algal biomass with TiO2 was also conducted at 300 °C. HTL was more effective by which 23.3 wt% of bio-crude oil was obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...