Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med Chem ; 19(2): 147-162, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35726433

RESUMO

BACKGROUND: The role of Zn(II) in storage, insulin secretion and function has been documented, while plant phenolics have antioxidant and other pharmacological credence. OBJECTIVE: The study aimed at synthesizing a novel medicinal Zn(II) complex. The medicinal properties of zinc(II) and caffeic acid were considered in synthesizing a novel complex with promising and improved antioxidant and anti-hyperglycaemic attributes. METHODS: Complex synthesis was done using a 1:2 molar ratio of zinc acetate and caffeic acid and structurally characterized using NMR, FT-IR, high resolution-mass spectroscopy and HPLC. Its cellular toxicity was assessed in Chang liver cells and L-myotubes. In vitro, cellular, and isolated tissue models were used to evaluate the antioxidant and anti-hyperglycaemic properties of the complex relative to its precursors. Molecular docking was used to investigate the interaction with insulin signalling target proteins: GLUT-4 and protein kinase B (Akt/PKB). RESULTS: Zinc(II) and caffeic acid interacted via Zn:O4 coordination, with the complex having one moiety of Zn(II) and 2 moieties of caffeic acid. The complex showed in vitro radical scavenging, α- glucosidase and α-amylase inhibitory activity up to 2.6 folds stronger than caffeic acid. The ability to inhibit lipid peroxidation (IC50 = 26.4 µM) and GSH depletion (IC50 = 16.8 µM) in hepatocytes was comparable to that of ascorbic acid (IC50 = 24.5 and 29.2 µM) and about 2 folds stronger than caffeic acid. Complexation improved glucose uptake activity of caffeic acid in L-6 myotubes (EC50 = 23.4 versus 169 µM) and isolated rat muscle tissues (EC50 = 339 versus 603 µM). Molecular docking showed better interaction with insulin signalling target proteins (GLUT-4 and Akt/PKB) than caffeic acid. The complex was not hepatotoxic or myotoxic. CONCLUSION: Data suggest a synergistic antioxidant and anti-hyperglycaemic potential between zinc and caffeic acid, which could be attributed to the Zn:O4 coordination. Thus, it may be of medicinal relevance.


Assuntos
Antioxidantes , Hipoglicemiantes , Ratos , Animais , Antioxidantes/química , Hipoglicemiantes/química , Acetato de Zinco , Proteínas Proto-Oncogênicas c-akt , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , alfa-Glucosidases/metabolismo , Insulina , Zinco/química
2.
Biomed Pharmacother ; 154: 113600, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36037784

RESUMO

Zinc and syringic acid have metabolic and antioxidant medicinal potentials. A novel zinc(II)-syringic acid complex with improved anti-hyperglycaemic and antioxidant potential was developed. Zinc(II) was complexed with syringic acid in a 1:2 molar ratio and characterized using FT-IR, 1H NMR and LC-MS. Different experimental models were used to compare the anti-hyperglycaemic and antioxidant properties between the complex and precursors. A Zn(II)-bisyringate.2H2O complex was formed. The in vitro radical scavenging and Fe3+ reducing antioxidant, antiglycation, and α-glucosidase inhibitory activities of the complex were 1.8-5.2 folds stronger than those of the syringic acid precursor and comparable to those of the positive controls. The complex possessed an increased ability to inhibit lipid peroxidation (by 1.6-1.7 folds) and glutathione depletion (2.8-3 folds) relative to syringic acid in Chang liver cells and liver tissues isolated from rats. The complex exhibited a higher glucose uptake effect (EC50 = 20.4 and 386 µM) than its precursors (EC50 = 71.1 and 6460 µM) in L6-myotubes and psoas muscle tissues isolated from rats, respectively, which may be linked to the observed increased cellular zinc uptake potentiated by complexation. Tissue glucose uptake activity was accompanied by increased hexokinase activity, suggesting increased glucose utilization. Moreover, treatment increased tissue phospho-Akt/pan-Akt ratio. The complex had strong molecular docking scores than syringic acid with target proteins linked to diabetes. The presence of two syringic acid moieties and Zn(II) in the complex influenced its potency. The complex was not hepatotoxic and myotoxic in vitro. Zinc-syringic acid complexation may be a novel promising therapeutic approach for diabetes and oxidative complications.


Assuntos
Antioxidantes , Zinco , Animais , Antioxidantes/metabolismo , Ácido Gálico/análogos & derivados , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Interleucina-6/metabolismo , Simulação de Acoplamento Molecular , Fibras Musculares Esqueléticas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Zinco/farmacologia
3.
J Food Biochem ; 46(10): e14360, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35929608

RESUMO

Natural supplements are important in diabetes and oxidative stress management. A complexation-mediated antihyperglycemic and antioxidant synergism between zinc(II) and p-coumaric acid was investigated. p-Coumaric acid was complexed with ZnSO4 and characterized by FT-IR, 1 H NMR, and mass spectroscopy. The antioxidant and antihyperglycemic potential of the complex and precursors were evaluated with different experimental models. Molecular docking with target proteins linked to diabetes was performed. A Zn(II)-bicoumarate.2H2 O complex was formed. The in vitro radical scavenging, α-glucosidase inhibitory, antiglycation, and anti-lipid peroxidative activities of the complex were several folds stronger than p-coumaric acid. In Chang liver cells and rat liver tissues, the complex inhibited lipid peroxidation (IC50  = 56.2 and 398 µM) and GSH depletion (IC50  = 33.9 and 38.7 µM), which was significantly stronger (2.3-5.4-folds) than p-coumaric acid and comparable to ascorbic acid. Zn(II) and p-coumaric synergistically modulated (1.7- and 2.8-folds than p-coumaric acid) glucose uptake in L-6 myotubes (EC50  = 10.7 µM) and rat muscle tissue (EC50  = 428 µM), which may be linked to the observed complexation-mediated increase in tissue zinc uptake. Glucose uptake activity was accompanied by increased hexokinase activity, suggesting increased glucose utilization. Docking scores α-glucosidase, GLUT-4, and PKB/Akt showed stronger interaction with the complex (-6.31 to -6.41 kcal/mol) compared to p-coumaric acid (-7.18 to -7.74 kcal/mol), which was influenced by the Zn(II) and bicoumarate moieties of the complex. In vitro, the complex was not hepatotoxic or myotoxic. Zn(II) complexation may be a therapeutic approach for improving the antioxidative and glycemic control potentials of p-coumaric acid. PRACTICAL APPLICATIONS: In functional medicine, natural supplements, plant-derived phenolics, and nutraceuticals are becoming popular in the management of diseases, including diabetes and oxidative stress. This has been largely attributed to their perceived holistic medicinal profile and the absence of notable toxicity concerns. In the past two decades, considerable attention has been drawn toward zinc mineral as a possible therapeutic supplement for diabetes due to its role in insulin secretion and reported insulin mimetic potentials. p-Coumaric acid is a known natural antioxidant with reported diabetes-related pharmacological effects. In this study, we took advantage of these properties and complexed both natural supplements, which resulted in a more potent nutraceutical with improved glycemic control and antioxidant potential. The complexation-mediated synergistic interaction between zinc and p-coumaric acid could be an important therapeutic approach in improving the use of these natural supplements or nutraceuticals in managing diabetes and associated oxidative complications.


Assuntos
Antioxidantes , Zinco , Animais , Antioxidantes/farmacologia , Ácido Ascórbico , Ácidos Cumáricos , Glucose/metabolismo , Controle Glicêmico , Hexoquinase , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Insulina , Minerais , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-akt , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , alfa-Glucosidases
4.
Diabet Med ; 39(9): e14905, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35748705

RESUMO

AIM: This study was done to investigate the anti-diabetic and anti-oxidative synergism between zinc(II) and ferulic acid through complexation. METHODS: Zinc sulphate was complexed with ferulic acid in a 1:2 molar ratio. The complex was characterized using Fourier-transform infrared spectroscopy, proton NMR and high-resolution mass spectroscopy techniques and evaluated for cellular toxicity. In silico, in vitro, cell-based and tissue experimental models were used to test the anti-diabetic and anti-oxidant activities of the complex relative to its precursors. RESULTS: A zinc(II)-biferulate.2H2 O complex was formed. The in vitro radical scavenging, anti-lipid peroxidative and α-glucosidase and α-amylase inhibitory activity of the complex was 1.7-2.1 folds more potent than ferulic acid. Zn(II) complexation increased the anti-glycation activity of ferulic acid by 1.5 folds. The complex suppressed lipid peroxidation (IC50  = 48.6 and 331 µM) and GHS depletion (IC50  = 33.9 and 33.5 µM) in both Chang liver cells and isolated rat liver tissue. Its activity was 2.3-3.3 folds more potent than ferulic acid and statistically comparable to ascorbic acid. Zn(II) complexation afforded ferulic acid improved glucose uptake activity in L-6 myotube (EC50  = 11.7 vs. 45.7 µM) and isolated rat muscle tissue (EC50  = 501 and 1510 µM). Complexation increased muscle tissue zinc(II) uptake and hexokinase activity. Docking scores of the complex (-7.24 to -8.25 kcal/mol) and ferulic acid (-5.75 to 6.43 kcal/mol) suggest the complex had stronger interaction with protein targets related to diabetes, which may be attributed to the 2 ferulic acid moieties and Zn(II) in the complex. Moreover, muscle tissue showed increased phospho-Akt/pan-Akt ratio upon treatment with complex. The complex was not hepatotoxic and myotoxic at in vitro cellular level. CONCLUSION: Zn(II) complexation may be promising therapeutic approach for improving the glycaemic control and anti-oxidative potential of natural phenolic acids.


Assuntos
Diabetes Mellitus , Proteínas Proto-Oncogênicas c-akt , Animais , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacologia , Ácidos Cumáricos/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Zinco/química , Zinco/farmacologia
5.
J Pharm Pharmacol ; 73(12): 1703-1714, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34109975

RESUMO

OBJECTIVES: Our aim was to synthesize, characterize and evaluate the antihyperglycaemic and anti-oxidative properties of a new Zn(II) complex of vanillic acid. METHODS: The complex was synthesized using ZnSO4.7H2O and vanillic acid as precursors. NMR and FTIR techniques were used to characterize the synthesized complex. The cytotoxicity of the complex was measured. The antihyperglycemic and anti-oxidative properties of the complex were evaluated using in vitro, cell-based and ex vivo models and compared with those of its precursors. KEY FINDINGS: Zn(II) coordinated with vanillic acid via a Zn(O6) coordination, with the complex having three moieties of vanillic acid. The radical scavenging, Fe3+ reducing and hepatic antilipid peroxidative activity of the complex were, respectively, 2.3-, 1.8- and 9.7-folds more potent than vanillic acid. Complexation increased the α-glucosidase and glycation inhibitory activity of vanillic acid by 3- and 2.6-folds, respectively. Zn(II) conferred potent L-6 myotube (EC50 = 20.4 µm) and muscle tissue (EC50 = 612 µm) glucose uptake effects on vanillic acid. Cytotoxicity evaluation showed that the complex did not reduce the viability of L-6 myotubes and Chang liver cells. CONCLUSIONS: The data suggest that Zn(II)-vanillic acid complex had improved bioactivity relative to vanillic acid. Thus, Zn(II) may be further studied as an antihyperglycaemic and anti-oxidative adjuvant for bioactive phenolic acids.


Assuntos
Antioxidantes/farmacologia , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ácido Vanílico/farmacologia , Zinco/farmacologia , Animais , Complexos de Coordenação , Diabetes Mellitus/metabolismo , Compostos Organometálicos , Ratos Sprague-Dawley
6.
Pharmacol Res ; 155: 104744, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32156651

RESUMO

Zinc has gained notable attention in the development of potent anti-diabetic agents, due to its role in insulin storage and secretion, as well as its reported insulin mimetic properties. Consequently, zinc(II) has been complexed with numerous organic ligands as an adjuvant to develop anti-diabetic agents with improved and/or broader scope of pharmacological properties. This review focuses on the research advances thus far to identify the major scientific gaps and prospects. Peer-reviewed published data on the anti-diabetic effects of zinc(II) complexes were sourced from different scientific search engines, including, but not limited to "PubMed", "Google Scholar", "Scopus" and ScienceDirect to identify potent anti-diabetic zinc(II) complexes. The complexes were subcategorized according to their precursor ligands. A critical analysis of the outcomes from published studies shows promising leads, with Zn(II) complexes having a "tri-facet" mode of exerting pharmacological effects. However, the promising leads have been flawed by some major scientific gaps. While zinc(II) complexes of synthetic ligands with little or no anti-diabetic pharmacological history remain the most studied (about 72 %), their toxicity profile was not reported, which raises safety concerns for clinical relevance. The zinc(II) complexes of plant polyphenols; natural ligands, such as maltol and hinokitiol; and supplements, such as ascorbic acid (a natural antioxidant), l-threonine and l-carnitine, showed promising insulin mimetic and glycemic control properties but remain understudied and lack clinical validation, in spite of their minimal safety concerns and health benefits. A paradigm shift toward probing (including clinical studies) supplements, plant polyphenol and natural ligands as anti-diabetic zinc(II) complex is, therefore, recommended. Also, promising anti-diabetic Zn(II) complexes of synthetic ligands should undergo critical toxicity evaluation to address possible safety concerns.


Assuntos
Complexos de Coordenação/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Zinco/uso terapêutico , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA