Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metab Brain Dis ; 32(5): 1507-1518, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28550500

RESUMO

Maple Syrup Urine Disease (MSUD) is biochemically characterized by elevated levels of leucine, isoleucine and valine, as well as their corresponding transaminated branched-chain α-keto acids in tissue and biological fluids. Neurological symptoms and cerebral abnormalities, whose mechanisms are still unknown, are typical of this metabolic disorder. In the present study, we evaluated the early effects (1 h after injection) and long-term effects (15 days after injection) of a single intracerebroventricular administration of α-ketoisocaproic acid (KIC) on oxidative stress parameters and cognitive and noncognitive behaviors. Our results showed that KIC induced early and long-term effects; we found an increase in TBARS levels, protein carbonyl content and DNA damage in the hippocampus, striatum and cerebral cortex both one hour and 15 days after KIC administration. Moreover, SOD activity increased in the hippocampus and striatum one hour after injection, whereas after 15 days, SOD activity decreased only in the striatum. On the other hand, KIC significantly decreased CAT activity in the striatum one hour after injection, but 15 days after KIC administration, we found a decrease in CAT activity in the hippocampus and striatum. Finally, we showed that long-term cognitive deficits follow the oxidative damage; KIC induced impaired habituation memory and long-term memory impairment. From the biochemical and behavioral findings, it we presume that KIC provokes oxidative damage, and the persistence of brain oxidative stress is associated with long-term memory impairment and prepulse inhibition.


Assuntos
Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Cetoácidos/administração & dosagem , Cetoácidos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Catalase/metabolismo , Injeções Intraventriculares , Masculino , Doença da Urina de Xarope de Bordo/psicologia , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/psicologia , Carbonilação Proteica , Ratos , Ratos Wistar , Reflexo de Sobressalto/efeitos dos fármacos , Superóxido Dismutase-1/metabolismo , Natação/psicologia , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
2.
Int J Dev Neurosci ; 31(5): 303-7, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23602810

RESUMO

Tyrosinemia type II is an inborn error of metabolism caused by mutations in the gene that encodes tyrosine aminotransferase, which leads to increased blood tyrosine levels. Considering that tyrosine levels are highly elevated in fluids of patients with tyrosinemia type II, and that previous studies demonstrated significant alterations in brain energy metabolism of young rats caused by l-tyrosine, the present study aimed to evaluate the effect of acute administration of l-tyrosine on the activities of citrate synthase, malate dehydrogenase, succinate dehydrogenase, and mitochondrial respiratory chain complexes I, II, II-III, and IV in posterior cortex, hippocampus, and striatum of infant rats. Wistar rats (10 days old) were killed 1h after a single intraperitoneal injection of tyrosine (500 mg/kg) or saline. The activities of energy metabolism enzymes were evaluated in brain of rats. Our results demonstrated that acute administration of l-tyrosine inhibited the activity of citrate synthase activity in striatum and increased the activities of malate dehydrogenase and succinate dehydrogenase in hippocampus. On the other hand, these enzymes were not affected in posterior cortex. The activities of complex I and complex II were inhibited by acute administration of l-tyrosine in striatum. On the other hand, the acute administration of l-tyrosine increased the activity of activity of complex II-III in hippocampus. Complex IV was not affected by acute administration of l-tyrosine in infant rats. Our results indicate an alteration in the energy metabolism in hippocampus and striatum of infant rats after acute administration of l-tyrosine. If the same effects occur in the brain of the patients, it is possible that energy metabolism impairment may be contribute to possible damage in memory and cognitive processes in patients with tyrosinemia type II.


Assuntos
Citrato (si)-Sintase/metabolismo , Corpo Estriado/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Hipocampo/metabolismo , Malato Desidrogenase/metabolismo , Succinato Desidrogenase/metabolismo , Tirosina/farmacologia , Animais , Corpo Estriado/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Hipocampo/efeitos dos fármacos , Masculino , Taxa de Depuração Metabólica/efeitos dos fármacos , Ratos , Ratos Wistar , Distribuição Tecidual/efeitos dos fármacos
3.
Mol Cell Biochem ; 350(1-2): 149-54, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21203802

RESUMO

Hepatic encephalopathy is an important cause of morbidity and mortality in patients with severe hepatic failure. This disease is clinically characterized by a large variety of symptoms including motor symptoms, cognitive deficits, as well as changes in the level of alertness up to hepatic coma. Acetaminophen is frequently used in animals to produce an experimental model to study the mechanisms involved in the progression of hepatic disease. The brain is highly dependent on ATP and most cell energy is obtained through oxidative phosphorylation, a process requiring the action of various respiratory enzyme complexes located in a special structure of the inner mitochondrial membrane. In this context, the authors evaluated the activities of mitochondrial respiratory chain complexes in the brain of rats submitted to acute administration of acetaminophen and treated with the combination of N-acetylcysteine (NAC) plus deferoxamine (DFX) or taurine. These results showed that acetaminophen administration inhibited the activities of complexes I and IV in cerebral cortex and that the treatment with NAC plus DFX or taurine was not able to reverse this inhibition. The authors did not observe any effect of acetaminophen administration on complexes II and III activities in any of the structures studied. The participation of oxidative stress has been postulated in the hepatic encephalopathy and it is well known that the electron transport chain itself is vulnerable to damage by reactive oxygen species. Since there was no effect of NAC + DFX, the effect of acetaminophen was likely to be due to something else than oxidative stress.


Assuntos
Acetaminofen , Encéfalo/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Falência Hepática/induzido quimicamente , Mitocôndrias/efeitos dos fármacos , Acetilcisteína/farmacologia , Analgésicos não Narcóticos , Animais , Antioxidantes/farmacologia , Encéfalo/metabolismo , Encéfalo/fisiologia , Desferroxamina/farmacologia , Regulação para Baixo/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Transporte de Elétrons/fisiologia , Falência Hepática/metabolismo , Falência Hepática/fisiopatologia , Masculino , Mitocôndrias/metabolismo , Ratos , Ratos Wistar , Taurina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...