Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Processes ; 165: 14-22, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31176684

RESUMO

Differences in diet requirements may be reflected in how floral visitors make decisions when probing nectar sources that differ in chemical composition. We examined decision-making in butterflies that form a specialization continuum involving pyrrolizidine alkaloids (PAs) when interacting with PA and non-PA plants: Agraulis vanillae (non-specialist), Danaus erippus (low demanding PA-specialist) and D. gilippus (high demanding PA-specialist). In addition, we assessed whether experience affected decision-making. Butterflies were tested on either Tridax procumbens (absence of PAs in nectar) or Ageratum conyzoides flowers (presence of PAs in nectar). Agraulis vanillae showed more acceptance for T. procumbens and more rejection for A. conyzoides; no differences were recorded for both Danaus species. Agraulis vanillae fed less on A. conyzoides than both Danaus species, which did not differ in this regard. In all butterfly species, experience on PA flowers did not affect feeding time. In the field, butterflies rarely visited PA flowers, regardless of the specialization degree. Our findings reveal that the specialization continuum seen in butterflies explains, at least in part, decision-making processes related to feeding. Additional factors as local adaptation mediated by the use of alternative nectar sources can affect flower visitation by specialist butterflies.


Assuntos
Borboletas/fisiologia , Tomada de Decisões , Necessidades Nutricionais , Animais , Flores , Néctar de Plantas , Alcaloides de Pirrolizidina
2.
Am J Bot ; 104(8): 1168-1178, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28790090

RESUMO

PREMISE OF THE STUDY: The ability of insect visitors to learn to manipulate complex flowers has important consequences for foraging efficiency and plant fitness. We investigated learning by two butterfly species, Danaus erippus and Heliconius erato, as they foraged on the complex flowers of Asclepias curassavica, as well as the consequences for pollination. METHODS: To examine learning with respect to flower manipulation, butterflies were individually tested during four consecutive days under insectary conditions. At the end of each test, we recorded the number of pollinaria attached to the body of each butterfly and scored visited flowers for numbers of removed and inserted pollinia. We also conducted a field study to survey D. erippus and H. erato visiting flowers of A. curassavica, as well as to record numbers of pollinaria attached to the butterflies' bodies, and surveyed A. curassavica plants in the field to inspect flowers for pollinium removal and insertion. KEY RESULTS: Learning improves the ability of both butterfly species to avoid the nonrewarding flower parts and to locate nectar more efficiently. There were no experience effects, for either species, on the numbers of removed and inserted pollinia. Heliconius erato removed and inserted more pollinia than D. erippus. For both butterfly species, pollinium removal was higher than pollinium insertion. CONCLUSION: This study is the first to show that Danaus and Heliconius butterflies can learn to manipulate complex flowers, but this learning ability does not confer benefits to pollination in A. curassavica.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...