Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Cell Surf ; 2: 14-23, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32743128

RESUMO

Cryptococcus neoformans mutants lacking each of the eight putative chitin synthase genes (CHS) have been previously generated. However, it is still unclear how deletion of chitin synthase genes affects the cryptococcal capsule. Since the connections between chitin metabolism and capsular polysaccharides in C. neoformans are numerous, we analyzed the effects of deletion of CHS genes on capsular and capsule-related structures of C. neoformans. CHS deletion affected capsular morphology in multiple ways, as determined by scanning electron microscopy and immunofluorescence analysis. Molecular diameter, serological reactivity and export of capsular polysaccharide were also affected in most of the chsΔ mutants, but the most prominent alterations were observed in the chs3Δ strain. C. neoformans cells lacking CHS genes also had altered formation of extracellular vesicles and variable chitinase activity under stress conditions. These results reveal previously unknown functions of CHS genes that greatly impact the physiology of C. neoformans.

2.
Future Microbiol ; 12: 227-238, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28262043

RESUMO

AIM: In this study, we aimed to analyze the relationship of phosphorus-rich structures with surface architecture in Cryptococcus neoformans. METHODS: Phosphorus-rich structures in C. neoformans were analyzed by combining fluorescence microscopy, biochemical extraction, scanning electron microscopy, electron probe x-ray microanalysis and 3D reconstruction of high pressure frozen and freeze substituted cells by focused ion beam-scanning electron microscopy (FIB-SEM). RESULTS & CONCLUSION: Intracellular and surface phosphorus-enriched structures were identified. These molecules were required for capsule assembly, as demonstrated in experiments using polysaccharide incorporation by capsule-deficient cells and mutants with defects in polyphosphate synthesis. The demonstration of intracellular and cell wall-associated polyphosphates in C. neoformans may lead to future studies involving their participation in both physiologic and pathogenic events.


Assuntos
Cápsulas Bacterianas/química , Cryptococcus neoformans/metabolismo , Fósforo/análise , Cápsulas Bacterianas/metabolismo , Cápsulas Bacterianas/ultraestrutura , Cryptococcus neoformans/genética , Cryptococcus neoformans/ultraestrutura , Microscopia Eletrônica de Varredura , Fósforo/metabolismo
3.
Fungal Genet Biol ; 49(11): 943-54, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23010152

RESUMO

The cell wall of the yeast form of the dimorphic fungus Paracoccidioides brasiliensis is enriched with α1,3-glucans. In Cryptococcus neoformans, α1,3-glucans interact with glucuronoxylomannan (GXM), a heteropolysaccharide that is essential for fungal virulence. In this study, we investigated the occurrence of P. brasiliensis glycans sharing properties with cryptococcal GXM. Protein database searches in P. brasiliensis revealed the presence of sequences homologous to those coding for enzymes involved in the synthesis of GXM and capsular architecture in C. neoformans. In addition, monoclonal antibodies (mAbs) raised to cryptococcal GXM bound to P. brasiliensis cells. Using protocols that were previously established for extraction and analysis of C. neoformans GXM, we recovered a P. brasiliensis glycan fraction composed of mannose and galactose, in addition to small amounts of glucose, xylose and rhamnose. In comparison with the C. neoformans GXM, the P. brasiliensis glycan fraction components had smaller molecular dimensions. The P. brasiliensis components, nevertheless, reacted with different GXM-binding mAbs. Extracellular vesicle fractions of P. brasiliensis also reacted with a GXM-binding mAb, suggesting that the polysaccharide-like molecule is exported to the extracellular space in secretory vesicles. An acapsular mutant of C. neoformans incorporated molecules from the P. brasiliensis extract onto the cell wall, resulting in the formation of surface networks that resembled the cryptococcal capsule. Coating the C. neoformans acapsular mutant with the P. brasiliensis glycan fraction resulted in protection against phagocytosis by murine macrophages. These results suggest that P. brasiliensis and C. neoformans share metabolic pathways required for the synthesis of similar polysaccharides and that P. brasiliensis yeast cell walls have molecules that mimic certain aspects of C. neoformans GXM. These findings are important because they provide additional evidence for the sharing of antigenically similar components across phylogenetically distant fungal species. Since GXM has been shown to be important for the pathogenesis of C. neoformans and to elicit protective antibodies, the finding of similar molecules in P. brasiliensis raises the possibility that these glycans play similar functions in paracoccidiomycosis.


Assuntos
Criptococose/microbiologia , Cryptococcus/metabolismo , Paracoccidioides/metabolismo , Paracoccidioidomicose/microbiologia , Polissacarídeos/metabolismo , Animais , Anticorpos Monoclonais/análise , Linhagem Celular , Criptococose/imunologia , Cryptococcus/química , Cryptococcus/genética , Ensaio de Imunoadsorção Enzimática , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Camundongos , Paracoccidioides/química , Paracoccidioides/genética , Paracoccidioidomicose/imunologia , Fagocitose , Polissacarídeos/química
4.
Eukaryot Cell ; 11(9): 1086-94, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22562469

RESUMO

In prior studies, we demonstrated that glucuronoxylomannan (GXM), the major capsular polysaccharide of the fungal pathogen Cryptococcus neoformans, interacts with chitin oligomers at the cell wall-capsule interface. The structural determinants regulating these carbohydrate-carbohydrate interactions, as well as the functions of these structures, have remained unknown. In this study, we demonstrate that glycan complexes composed of chitooligomers and GXM are formed during fungal growth and macrophage infection by C. neoformans. To investigate the required determinants for the assembly of chitin-GXM complexes, we developed a quantitative scanning electron microscopy-based method using different polysaccharide samples as inhibitors of the interaction of chitin with GXM. This assay revealed that chitin-GXM association involves noncovalent bonds and large GXM fibers and depends on the N-acetyl amino group of chitin. Carboxyl and O-acetyl groups of GXM are not required for polysaccharide-polysaccharide interactions. Glycan complex structures composed of cryptococcal GXM and chitin-derived oligomers were tested for their ability to induce pulmonary cytokines in mice. They were significantly more efficient than either GXM or chitin oligomers alone in inducing the production of lung interleukin 10 (IL-10), IL-17, and tumor necrosis factor alpha (TNF-α). These results indicate that association of chitin-derived structures with GXM through their N-acetyl amino groups generates glycan complexes with previously unknown properties.


Assuntos
Quitina/química , Cryptococcus neoformans/química , Polissacarídeos/química , Animais , Antígenos de Fungos/química , Quitina/análogos & derivados , Quitina/metabolismo , Cryptococcus neoformans/imunologia , Cryptococcus neoformans/metabolismo , Citocinas/metabolismo , Feminino , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Polissacarídeos/imunologia , Polissacarídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...