Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; 35(9-12): 1367-77, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24701935

RESUMO

Metal-impregnated carbons (Cu--AC; Ag--AC and Pd--AC) were studied as adsorbents for the desulphurization of liquid fuels. A real gasoline was examined for sulphur compounds. Textural characteristics of adsorbents were determined by nitrogen adsorption/desorption isotherms at 77 K. The adsorption isotherms were obtained by frontal analysis in a single fixed bed at 30 degrees C and 45 degrees C. Breakthrough curves were simulated according to a mathematical model that assumed axially dispersed flow and mass transfer described by a linear driving force approximation and nonlinear adsorption equilibrium reached instantaneously on the external surface of the adsorbents particles. The model was solved numerically by orthogonal collocation in finite elements, using the commercial solver gPROMS. The proposed model matched experimental data reasonably well. Resistance to mass transfer was significant and thought to be due to intraparticle diffusion kinetics. The results confirmed the efficiency of the use of activated carbon (AC) in the adsorption of sulphur compounds, especially when its surface is modified with metals. Comparing adsorption capacities of sulphur compounds from real gasoline, AC-Pd material appeared more selective than other materials, even presenting a behaviour of rapid saturation explained by the presence of other components competing for adsorption sites, reducing their effectiveness in removing sulphur compounds. Both pristine AC and Pd--AC showed good regenerability. The regenerated Pd--AC sorbent can recover about 85% of the desulphurization capacity.


Assuntos
Poluição por Petróleo , Compostos de Enxofre/isolamento & purificação , Absorção , Carvão Vegetal/química , Metais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...