Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 31(30): 3547-60, 2012 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-22105357

RESUMO

The small GTPase H-Ras is a proto-oncogene that activates a variety of different pathways including the extracellular-signal-regulated kinase (ERK)/mitogen-activated protein kinase pathway. H-Ras is mutated in many human malignancies, and these mutations cause the protein to be constitutively active. Phosphoprotein enriched in astrocytes, 15 kDa (PEA-15) blocks ERK-dependent gene transcription and inhibits proliferation by sequestering ERK in the cytoplasm. We therefore investigated whether PEA-15 influences H-Ras-mediated transformation. We found that PEA-15 does not block H-Ras-activated proliferation when H-Ras is constitutively active. We show instead that in H-Ras-transformed mouse kidney epithelial cells, co-expression of PEA-15 resulted in enhanced soft agar colony growth and increased tumor growth in vivo. Overexpression of both H-Ras and PEA-15 resulted in accelerated G1/S cell cycle transition and increased activation of the ERK signaling pathway. PEA-15 mediated these effects through activation of its binding partner phospholipase D1 (PLD1). Inhibition of PLD1 or interference with PEA-15/PLD1 binding blocked PEA-15's ability to increase ERK activation. Our findings reveal a novel mechanism by which PEA-15 positively regulates Ras/ERK signaling and increases the proliferation of H-Ras-transformed epithelial cells through enhanced PLD1 expression and activation. Thus, our work provides a surprising mechanism by which PEA-15 augments H-Ras-driven transformation. These data reveal that PEA-15 not only suppresses ERK signaling and tumorigenesis but also alternatively enhances tumorigenesis in the context of active Ras.


Assuntos
Transformação Celular Neoplásica/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfolipase D/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Linhagem Celular , Proliferação de Células , Inibidores Enzimáticos/farmacologia , Humanos , Rim/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Nus , Fosfolipase D/antagonistas & inibidores , Proto-Oncogene Mas
2.
Cell Mol Life Sci ; 66(5): 814-30, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18989622

RESUMO

Death effector domains (DEDs) are protein-protein interaction structures that are found in proteins that regulate a variety of signal transduction pathways. DEDs are a part of the larger family of Death Domain structures that have been primarily described in the control of programmed cell death. The seven standard DED-containing proteins are fas associated death domain protein (FADD), Caspase-8 and 10, cellular FLICE-like inhibitory protein (c-FLIP), death effector domain containing DNA binding (DEDD), DEDD2 and phosphoprotein enriched in astrocytes 15-Kda (PEA-15). These proteins are particularly associated with the regulation of apoptosis and proliferation mediated by the tumor necrosis factor alpha (TNFalpha) receptor family. Consequently DED-containing proteins are reported to regulate transcription, migration, and proliferation, in addition to both pro and anti-apoptotic functions. Moreover, DED proteins are essential in embryonic development and homeostasis of the immune system. Here we focus on the role of DED-containing proteins in development and the pathologies arising from abnormal expression of these proteins.


Assuntos
Apoptose/fisiologia , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Animais , Proliferação de Células , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/química , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/genética , Humanos , Modelos Moleculares , Morfogênese/fisiologia , Conformação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais/fisiologia
3.
Dev Cell ; 1(2): 239-50, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11702783

RESUMO

The ERK 1/2 MAP kinase pathway controls cell growth and survival and modulates integrin function. Here, we report that PEA-15, a protein variably expressed in multiple cell types, blocks ERK-dependent transcription and proliferation by binding ERKs and preventing their localization in the nucleus. PEA-15 contains a nuclear export sequence required for its capacity to anchor ERK in the cytoplasm. Genetic deletion of PEA-15 results in increased ERK nuclear localization with consequent increased cFos transcription and cell proliferation. Thus, PEA-15 can redirect the biological outcome of MAP kinase signaling by regulating the subcellular localization of ERK MAP kinase.


Assuntos
Citoplasma/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Fosfoproteínas/metabolismo , Fosfoproteínas/fisiologia , Células 3T3 , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose , Northern Blotting , Células CHO , Divisão Celular , Núcleo Celular/metabolismo , Sobrevivência Celular , Cricetinae , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Proteínas de Fluorescência Verde , Imuno-Histoquímica , Proteínas Luminescentes/metabolismo , Camundongos , Microscopia de Fluorescência , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Fosfoproteínas/genética , Testes de Precipitina , Ligação Proteica , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Transcrição Gênica , Transfecção , Técnicas do Sistema de Duplo-Híbrido
4.
Sci STKE ; 2001(103): pl9, 2001 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-11593050

RESUMO

Using expression cloning one can isolate proteins with specific biological functions. This methodology can be adapted for the identification of novel players in the regulation of cell signaling. Here, we describe an expression cloning strategy to identify suppressors of Ras signaling. This screen is based on the observation that the activation of the small guanosine triphosphate (GTP)-binding protein H-Ras initiates a mitogen-activated protein kinase (MAPK)-dependent signaling pathway that inactivates integrin ligand binding. Our strategy depends on flow cytometry and a monoclonal antibody that recognizes integrin activation states. Flow cytometry enhances the screen's sensitivity thereby allowing us to examine function quantitatively at the level of a single cell millions of times in one screen. The following protocol provides a detailed method for the isolation of proteins that regulate cell signaling.


Assuntos
Clonagem Molecular/métodos , Transdução de Sinais , Animais , Anticorpos Monoclonais/imunologia , Células CHO , Cricetinae , Citometria de Fluxo , Biblioteca Gênica , Integrinas/imunologia , Integrinas/metabolismo , Sistema de Sinalização das MAP Quinases , Fosfoproteínas/genética , Fosfoproteínas/fisiologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/fisiologia , Sensibilidade e Especificidade , Transfecção , Transformação Genética
5.
Mol Biol Cell ; 11(9): 2863-72, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10982386

RESUMO

PEA-15 is a small, death effector-domain (DED)-containing protein that was recently demonstrated to inhibit tumor necrosis factor-alpha-induced apoptosis and to reverse the inhibition of integrin activation due to H-Ras. This led us to investigate the involvement of PEA-15 in Ras signaling. Surprisingly, PEA-15 activates the extracellular signal receptor-activated kinase (ERK) mitogen-activated protein kinase pathway in a Ras-dependent manner. PEA-15 expression in Chinese hamster ovary cells resulted in an increased mitogen-activated protein kinase kinase and ERK activity. Furthermore, PEA-15 expression leads to an increase in Ras guanosine 5'-triphosphate loading. PEA-15 bypasses the anchorage dependence of ERK activation. Finally, the effects of PEA-15 on integrin signaling are separate from those on ERK activation. Heretofore, all known DEDs functioned in the regulation of apoptosis. In contrast, the DED of PEA-15 is essential for its capacity to activate ERK. The ability of PEA-15 to simultaneously inhibit apoptosis and potentiate Ras-to-Erk signaling may be of importance for oncogenic processes.


Assuntos
MAP Quinase Quinase Quinase 1 , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfoproteínas/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo , Células 3T3 , Animais , Proteínas Reguladoras de Apoptose , Células CHO , Adesão Celular , Linhagem Celular , Cricetinae , Ativação Enzimática , Guanosina Trifosfato/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Quinases JNK Ativadas por Mitógeno , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno
6.
J Biol Chem ; 273(51): 33897-900, 1998 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-9852038

RESUMO

Increased integrin ligand binding affinity (activation) is triggered by intracellular signaling events. A Ras-initiated mitogen-activated protein kinase pathway suppresses integrin activation in fibroblasts. We used expression cloning to isolate cDNAs that prevent Ras suppression of integrin activation. Here, we report that PEA-15, a small death effector domain (DED)-containing protein, blocks Ras suppression. PEA-15 does not block the capacity of Ras to activate the ERK mitogen-activated protein kinase pathway. Instead, it inhibits suppression via a pathway blocked by a dominant-negative form of the distinct small GTPase, R-Ras. Heretofore, all known DEDs functioned in the regulation of apoptosis. In contrast, the DED of PEA-15 is essential for its capacity to reverse suppression of integrin activation. Thus, certain DED-containing proteins can regulate integrin activation as opposed to apoptotic protease cascades.


Assuntos
Integrinas/fisiologia , Fosfoproteínas/fisiologia , Proteínas ras/metabolismo , Sequência de Aminoácidos , Animais , Apoptose , Células CHO , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Clonagem Molecular , Cricetinae , Integrinas/química , Integrinas/genética , Proteína Quinase 1 Ativada por Mitógeno , Dados de Sequência Molecular , Fosfoproteínas/química , Fosfoproteínas/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transfecção
7.
Nature ; 390(6655): 81-5, 1997 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-9363894

RESUMO

The integrin family of adhesion receptors are involved in cell growth, migration and tumour metastasis. Integrins are heterodimeric proteins composed of an alpha and a beta subunit, each with a large extracellular, a single transmembrane, and a short cytoplasmic domain. The dynamic regulation of integrin affinity for ligands in response to cellular signals is central to integrin function. This process is energy dependent and is mediated through integrin cytoplasmic domains. However, the cellular machinery regulating integrin affinity remains poorly understood. Here we describe a genetic strategy to disentangle integrin signalling pathways. Dominant suppression occurs when overexpression of isolated integrin beta1 cytoplasmic domains blocks integrin activation. Proteins involved in integrin signalling were identified by their capacity to complement dominant suppression in an expression cloning scheme. CD98, an early T-cell activation antigen that associates with functional integrins, was found to regulate integrin activation. Furthermore, antibody-mediated crosslinking of CD98 stimulated beta1 integrin-dependent cell adhesion. These data indicate that CD98 is involved in regulating integrin affinity, and validate an unbiased genetic approach to analysing integrin signalling pathways.


Assuntos
Antígenos CD/fisiologia , Proteínas de Transporte/fisiologia , Integrinas/fisiologia , Animais , Anticorpos Monoclonais , Sítios de Ligação , Células CHO , Adesão Celular , Clonagem Molecular , Cricetinae , Proteína-1 Reguladora de Fusão , Teste de Complementação Genética , Humanos , Integrina alfa6beta1 , Integrinas/genética , Dados de Sequência Molecular , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/fisiologia , Proteínas Recombinantes de Fusão/genética , Transdução de Sinais , Supressão Genética , Células Tumorais Cultivadas
8.
Development ; 122(9): 2873-83, 1996 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-8787760

RESUMO

Integrins mediate cell-ECM interactions essential for morphogenesis, however, the extent to which integrin adhesive activities are regulated in the embryo has not been addressed. We report that integrin-dependent cell adhesion to the Arg-Gly-Asp (RGD) containing central cell-binding domain of fibronectin is required for gastrulation in Xenopus. Although all cells of the early embryo retain the ability to attach to this region, only involuting cells arising from the dorsal and ventral lips of the blastopore are able to spread and migrate on fibronectin in vitro. This change in adhesive behavior is mimicked by treating animal cap cells with activin-A. Activin-induced changes in adhesion are independent of new transcription, translation, or changes in receptor expression at the cell surface. We demonstrate that ectopic expression of integrin alpha4beta1 in animal cap cells results in attachment to the non RGD-containing V-region of fibronectin. Further, these cells acquire the ability to spread on the V-region following activin induction. Thus, alpha4beta1 adhesion to the V-region, like endogenous integrin binding to the central cell-binding domain, is responsive to activin signalling. These data indicate that cell adhesion to the central cell-binding domain is regulated in both space and time, and is under the control of inductive signals that initiate gastrulation movements. We suggest that position-specific inductive interactions are likely to represent a novel and general mechanism by which integrin adhesion is modulated throughout development.


Assuntos
Adesão Celular , Indução Embrionária , Fibronectinas/metabolismo , Gástrula/fisiologia , Integrinas/metabolismo , Receptores de Retorno de Linfócitos/metabolismo , Ativinas , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Eletroforese em Gel de Poliacrilamida , Fibronectinas/química , Inibinas/farmacologia , Integrina alfa4beta1 , Mesoderma/metabolismo , Dados de Sequência Molecular , Oligopeptídeos/metabolismo , Testes de Precipitina , Transdução de Sinais , Xenopus laevis/embriologia
9.
J Cell Biol ; 134(1): 227-40, 1996 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-8698817

RESUMO

During Xenopus laevis gastrulation, the basic body plan of the embryo is generated by movement of the marginal zone cells of the blastula into the blastocoel cavity. This morphogenetic process involves cell adhesion to the extracellular matrix protein fibronectin (FN). Regions of FN required for the attachment and migration of involuting marginal zone (IMZ) cells were analyzed in vitro using FN fusion protein substrates. IMZ cell attachment to FN is mediated by the Arg-Gly-Asp (RGD) sequence located in the type III-10 repeat and by the Pro-Pro-Arg-Arg-Ala-Arg (PPRRAR) sequence in the type III-13 repeat of the Hep II domain. IMZ cells spread and migrate persistently on fusion proteins containing both the RGD and synergy site sequence Pro-Pro-Ser-Arg-Asn (PPSRN) located in the type III-9 repeat. Cell recognition of the synergy site is positionally regulated in the early embryo. During gastrulation, IMZ cells will spread and migrate on FN whereas presumptive pre-involuting mesoderm, vegetal pole endoderm, and animal cap ectoderm will not. However, animal cap ectoderm cells acquire the ability to spread and migrate on the RGD/synergy region when treated with the mesoderm inducing factor activin-A. These data suggest that mesoderm induction activates the position-specific recognition of the synergy site of FN in vivo. Moreover, we demonstrate the functional importance of this site using a monoclonal antibody that blocks synergy region-dependent cell spreading and migration on FN. Normal IMZ movement is perturbed when this antibody is injected into the blastocoel cavity indicating that IMZ cell interaction with the synergy region is required for normal gastrulation.


Assuntos
Adesão Celular , Fibronectinas/fisiologia , Gástrula/fisiologia , Xenopus laevis/embriologia , Ativinas , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Movimento Celular , Primers do DNA/química , Indução Embrionária , Regulação da Expressão Gênica no Desenvolvimento , Heparina/fisiologia , Inibinas/fisiologia , Dados de Sequência Molecular , Morfogênese , Oligopeptídeos , RNA Mensageiro/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...