Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Magn Reson Imaging ; 109: 134-146, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508290

RESUMO

Accurate and efficient segmenting of vertebral bodies, muscles, and discs is crucial for analyzing various spinal diseases. However, traditional methods are either laborious and time-consuming (manual segmentation) or require extensive training data (fully automatic segmentation). FastCleverSeg, our proposed semi-automatic segmentation approach, addresses those limitations by significantly reducing user interaction while maintaining high accuracy. First, we reduce user interaction by requiring the manual annotation of only two or three slices. Next, we automatically Estimate the Annotation on Intermediary Slices (EANIS) using traditional computer vision/graphics concepts. Finally, our proposed method leverages improved voxel weight balancing to achieve fast and precise volumetric segmentation in the segmentation process. Experimental evaluations on our assembled diverse MRI databases comprising 179 patients (60 male, 119 female), demonstrate a remarkable 25 ms (30 ms standard deviation) processing time and a significant reduction in user interaction compared to existing approaches. Importantly, FastCleverSeg maintains or surpasses the segmentation quality of competing methods, achieving a Dice score of 94%. This invaluable tool empowers physicians to efficiently generate reliable ground truths, expediting the segmentation process and paving the way for future integration with deep learning approaches. In turn, this opens exciting possibilities for future fully automated spine segmentation.


Assuntos
Processamento de Imagem Assistida por Computador , Doenças da Coluna Vertebral , Humanos , Masculino , Feminino , Processamento de Imagem Assistida por Computador/métodos , Coluna Vertebral/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Doenças da Coluna Vertebral/diagnóstico por imagem , Bases de Dados Factuais
2.
Comput Biol Med ; 134: 104489, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34015672

RESUMO

Chronic dermatological ulcers cause great discomfort to patients, and while monitoring the size of wounds over time provides significant clues about the healing evolution and the clinical condition of patients, the lack of practical applications in existing studies impairs users' access to appropriate treatment and diagnosis methods. We propose the UTrack framework to help with the acquisition of photos, the segmentation and measurement of wounds, the storage of photos and symptoms, and the visualization of the evolution of ulcer healing. UTrack-App is a mobile app for the framework, which processes images taken by standard mobile device cameras without specialized equipment and stores all data locally. The user manually delineates the regions of the wound and the measurement object, and the tool uses the proposed UTrack-Seg segmentation method to segment them. UTrack-App also allows users to manually input a unit of measurement (centimeter or inch) in the image to improve the wound area estimation. Experiments show that UTrack-Seg outperforms its state-of-the-art competitors in ulcer segmentation tasks, improving F-Measure by up to 82.5% when compared to superpixel-based approaches and up to 19% when compared to Deep Learning ones. The method is unsupervised, and it semi-automatically segments real-world images with 0.9 of F-Measure, on average. The automatic measurement outperformed the manual process in three out of five different rulers. UTrack-App takes at most 30 s to perform all evaluation steps over high-resolution images, thus being well-suited to analyze ulcers using standard mobile devices.


Assuntos
Aplicativos Móveis , Telemedicina , Atenção à Saúde , Humanos , Úlcera , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...