Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 280: 299-317, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25241065

RESUMO

CNS immune signaling contributes to deleterious opioid effects including hyperalgesia, tolerance, reward, and dependence/withdrawal. Such effects are mediated by opioid signaling at toll-like receptor 4 (TLR4), presumptively of glial origin. Whether CNS endothelial cells express TLR4 is controversial. If so, they would be well positioned for activation by blood-borne opioids, contributing to opioid-induced pro-inflammatory responses. These studies examined adult primary rat CNS endothelial cell responses to (-)-morphine or its mu opioid receptor (MOR)-inactive metabolite morphine-3-glucuronide (M3G), both known TLR4 agonists. We demonstrate that adult rat CNS endothelial cells express functional TLR4. M3G activated nuclear factor kappaB (NF-κB), increased tumor necrosis factor-α (TNFα) and cyclooxygenase-2 (COX2) mRNAs, and released prostaglandin E2 (PGE2) from these cells. (-)-Morphine-induced upregulation of TNFα mRNA and PGE2 release were unmasked by pre-treatment with nalmefene, a MOR antagonist without TLR4 activity (unlike CTAP, shown to have both MOR- and TLR4-activity), suggestive of an interplay between MOR and TLR4 co-activation by (-)-morphine. In support, MOR-dependent Protein Kinase A (PKA) opposed TLR4 signaling, as PKA inhibition (H-89) also unmasked (-)-morphine-induced TNFα and COX2 mRNA upregulation. Intrathecal injection of CNS endothelial cells, stimulated in vitro with M3G, produced TLR4-dependent tactile allodynia. Further, cortical suffusion with M3G in vivo induced TLR4-dependent vasodilation. Finally, endothelial cell TLR4 activation by lipopolysaccharide and/or M3G was blocked by the glial inhibitors AV1013 and propentofylline, demonstrating endothelial cells as a new target of such drugs. These data indicate that (-)-morphine and M3G can activate CNS endothelial cells via TLR4, inducing proinflammatory, biochemical, morphological, and behavioral sequelae. CNS endothelial cells may have previously unanticipated roles in opioid-induced effects, in phenomena blocked by presumptive glial inhibitors, as well as TLR4-mediated phenomena more broadly.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Derivados da Morfina/farmacologia , Morfina/farmacologia , Entorpecentes/farmacologia , Receptor 4 Toll-Like/metabolismo , Animais , Sistema Nervoso Central/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Células Endoteliais/fisiologia , Hiperalgesia/tratamento farmacológico , Hiperalgesia/fisiopatologia , Masculino , NF-kappa B/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/fisiologia , Neuroimunomodulação/efeitos dos fármacos , Neuroimunomodulação/fisiologia , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Receptores Opioides mu/antagonistas & inibidores , Receptores Opioides mu/metabolismo , Receptor 4 Toll-Like/agonistas , Fator de Necrose Tumoral alfa/metabolismo , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
2.
Neuroscience ; 169(4): 1888-900, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20547213

RESUMO

Glutamate neurotransmission is highly regulated, largely by glutamate transporters. In the spinal cord, the glutamate transporter GLT-1 is primarily responsible for glutamate clearance. Downregulation of GLT-1 can occur in activated astrocytes, and is associated with increased extracellular glutamate and neuroexcitation. Among other conditions, astrocyte activation occurs following repeated opioids and in models of chronic pain. If GLT-1 downregulation occurs in these states, GLT-1 could be a pharmacological target for improving opioid efficacy and controlling chronic pain. The present studies explored whether daily intrathecal treatment of rats with ceftriaxone, a beta-lactam antibiotic that upregulates GLT-1 expression, could prevent development of hyperalgesia and allodynia following repeated morphine, reverse pain arising from central or peripheral neuropathy, and reduce glial activation in these models. Ceftriaxone pre-treatment attenuated the development of hyperalgesia and allodynia in response to repeated morphine, and prevented associated astrocyte activation. In a model of multiple sclerosis (experimental autoimmune encephalomyelitis; EAE), ceftriaxone reversed tactile allodynia and halted the progression of motor weakness and paralysis. Similarly, ceftriaxone reversed tactile allodynia induced by chronic constriction nerve injury (CCI). EAE and CCI each significantly reduced the expression of membrane-bound, dimerized GLT-1 protein in lumbar spinal cord, an effect normalized by ceftriaxone. Lastly, ceftriaxone normalized CCI- and EAE-induced astrocyte activation in lumbar spinal cord. Together, these data indicate that increasing spinal GLT-1 expression attenuates opioid-induced paradoxical pain, alleviates neuropathic pain, and suppresses associated glial activation. GLT-1 therefore may be a therapeutic target that could improve available treatment options for patients with chronic pain.


Assuntos
Ceftriaxona/farmacologia , Ceftriaxona/uso terapêutico , Transportador 2 de Aminoácido Excitatório/biossíntese , Ácido Glutâmico/metabolismo , Dor Intratável/tratamento farmacológico , Medula Espinal/efeitos dos fármacos , Regulação para Cima/fisiologia , Animais , Modelos Animais de Doenças , Masculino , Dor Intratável/metabolismo , Dor Intratável/fisiopatologia , Ratos , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia , Regulação para Cima/efeitos dos fármacos
3.
Neuroscience ; 164(4): 1821-32, 2009 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-19788917

RESUMO

Spinal cord microglial toll-like receptor 4 (TLR4) has been implicated in enhancing neuropathic pain and opposing morphine analgesia. The present study was initiated to explore TLR4-mediated pain modulation by intrathecal lipopolysaccharide, a classic TLR4 agonist. However, our initial study revealed that intrathecal lipopolysaccharide failed to induce low-threshold mechanical allodynia in naive rats, suggestive that TLR4 agonism may be insufficient to enhance pain. These studies explore the possibility that a second signal is required; namely, heat shock protein-90 (HSP90). This candidate was chosen for study given its known importance as a regulator of TLR4 signaling. A combination of in vitro TLR4 cell signaling and in vivo behavioral studies of pain modulation suggest that TLR4-enhancement of neuropathic pain and TLR4-suppression of morphine analgesia each likely require HSP90 as a cofactor for the effects observed. In vitro studies revealed that dimethyl sulfoxide (DMSO) enhances HSP90 release, suggestive that this may be a means by which DMSO enhances TLR4 signaling. While 2 and 100 microg lipopolysaccharide intrathecally did not induce mechanical allodynia across the time course tested, co-administration of 1 microg lipopolysaccharide with a drug that enhances HSP90-mediated TLR4 signaling now induced robust allodynia. In support of this allodynia being mediated via a TLR4/HSP90 pathway, it was prevented or reversed by intrathecal co-administration of a HSP90 inhibitor, a TLR4 inhibitor, a microglia/monocyte activation inhibitor (as monocyte-derived cells are the predominant cell type expressing TLR4), and interleukin-1 receptor antagonist (as this proinflammatory cytokine is a downstream consequence of TLR4 activation). Together, these results suggest for the first time that TLR4 activation is necessary but not sufficient to induce spinally mediated pain enhancement. Rather, the data suggest that TLR4-dependent pain phenomena may require contributions by multiple components of the TLR4 receptor complex.


Assuntos
Proteínas de Choque Térmico HSP90/fisiologia , Dor/fisiopatologia , Receptor 4 Toll-Like/fisiologia , Analgésicos Opioides/farmacologia , Animais , Benzoquinonas/farmacologia , Constrição Patológica/complicações , Dimetil Sulfóxido/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/biossíntese , Injeções Espinhais , Interleucina-1/antagonistas & inibidores , Lactamas Macrocíclicas/farmacologia , Lipopolissacarídeos/farmacologia , Masculino , Microglia/fisiologia , Morfina/farmacologia , Dor/etiologia , Doenças do Sistema Nervoso Periférico/etiologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , Estimulação Física , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/fisiopatologia , Transdução de Sinais , Receptor 4 Toll-Like/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...