Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1349569, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812738

RESUMO

Introduction: Because Genomic selection (GS) is a predictive methodology, it needs to guarantee high-prediction accuracies for practical implementations. However, since many factors affect the prediction performance of this methodology, its practical implementation still needs to be improved in many breeding programs. For this reason, many strategies have been explored to improve the prediction performance of this methodology. Methods: When environmental covariates are incorporated as inputs in the genomic prediction models, this information only sometimes helps increase prediction performance. For this reason, this investigation explores the use of feature engineering on the environmental covariates to enhance the prediction performance of genomic prediction models. Results and discussion: We found that across data sets, feature engineering helps reduce prediction error regarding only the inclusion of the environmental covariates without feature engineering by 761.625% across predictors. These results are very promising regarding the potential of feature engineering to enhance prediction accuracy. However, since a significant gain in prediction accuracy was observed in only some data sets, further research is required to guarantee a robust feature engineering strategy to incorporate the environmental covariates.

2.
Front Plant Sci ; 15: 1324090, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504889

RESUMO

In the field of plant breeding, various machine learning models have been developed and studied to evaluate the genomic prediction (GP) accuracy of unseen phenotypes. Deep learning has shown promise. However, most studies on deep learning in plant breeding have been limited to small datasets, and only a few have explored its application in moderate-sized datasets. In this study, we aimed to address this limitation by utilizing a moderately large dataset. We examined the performance of a deep learning (DL) model and compared it with the widely used and powerful best linear unbiased prediction (GBLUP) model. The goal was to assess the GP accuracy in the context of a five-fold cross-validation strategy and when predicting complete environments using the DL model. The results revealed the DL model outperformed the GBLUP model in terms of GP accuracy for two out of the five included traits in the five-fold cross-validation strategy, with similar results in the other traits. This indicates the superiority of the DL model in predicting these specific traits. Furthermore, when predicting complete environments using the leave-one-environment-out (LOEO) approach, the DL model demonstrated competitive performance. It is worth noting that the DL model employed in this study extends a previously proposed multi-modal DL model, which had been primarily applied to image data but with small datasets. By utilizing a moderately large dataset, we were able to evaluate the performance and potential of the DL model in a context with more information and challenging scenario in plant breeding.

3.
Genes (Basel) ; 15(3)2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38540344

RESUMO

Genomic selection (GS) is revolutionizing plant breeding. However, its practical implementation is still challenging, since there are many factors that affect its accuracy. For this reason, this research explores data augmentation with the goal of improving its accuracy. Deep neural networks with data augmentation (DA) generate synthetic data from the original training set to increase the training set and to improve the prediction performance of any statistical or machine learning algorithm. There is much empirical evidence of their success in many computer vision applications. Due to this, DA was explored in the context of GS using 14 real datasets. We found empirical evidence that DA is a powerful tool to improve the prediction accuracy, since we improved the prediction accuracy of the top lines in the 14 datasets under study. On average, across datasets and traits, the gain in prediction performance of the DA approach regarding the Conventional method in the top 20% of lines in the testing set was 108.4% in terms of the NRMSE and 107.4% in terms of the MAAPE, but a worse performance was observed on the whole testing set. We encourage more empirical evaluations to support our findings.


Assuntos
Genoma de Planta , Genômica , Fenótipo , Aprendizado de Máquina , Redes Neurais de Computação
4.
Theor Appl Genet ; 137(1): 21, 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38221602

RESUMO

KEY MESSAGE: Genomic prediction models for quantitative traits assume continuous and normally distributed phenotypes. In this research, we proposed a novel Bayesian discrete lognormal regression model. Genomic selection is a powerful tool in modern breeding programs that uses genomic information to predict the performance of individuals and select those with desirable traits. It has revolutionized animal and plant breeding, as it allows breeders to identify the best candidates without labor-intensive and time-consuming phenotypic evaluations. While several statistical models have been developed, most of them have been for quantitative continuous traits and only a few for count responses. In this paper, we propose a discrete lognormal regression model in the Bayesian context, that with a Gibbs sampler to explore the corresponding posterior distribution and make the predictions. Two datasets of resistance disease is used in the wheat crop and are then evaluated against the traditional Gaussian model and a lognormal model. The results indicate the proposed model is a competitive and natural model for predicting count genomic traits.


Assuntos
Modelos Genéticos , Melhoramento Vegetal , Humanos , Animais , Teorema de Bayes , Genoma , Genômica/métodos , Fenótipo
5.
Front Plant Sci ; 14: 1218151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564390

RESUMO

Introduction: Genomic selection (GS) has gained global importance due to its potential to accelerate genetic progress and improve the efficiency of breeding programs. Objectives of the research: In this research we proposed a method to improve the prediction accuracy of tested lines in new (untested) environments. Method-1: The new method trained the model with a modified response variable (a difference of response variables) that decreases the lack of a non-stationary distribution between the training and testing and improved the prediction accuracy. Comparing new and conventional method: We compared the prediction accuracy of the conventional genomic best linear unbiased prediction (GBLUP) model (M1) including (or not) genotype × environment interaction (GE) (M1_GE; M1_NO_GE) versus the proposed method (M2) on several data sets. Results and discussion: The gain in prediction accuracy of M2, versus M1_GE, M1_NO_GE in terms of Pearson´s correlation was of at least 4.3%, while in terms of percentage of top-yielding lines captured when was selected the 10% (Best10) and 20% (Best20) of lines was at least of 19.5%, while in terms of Normalized Root Mean Squared Error (NRMSE) was of at least of 42.29%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...