Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Syst ; 11(2): 109-120, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32853539

RESUMO

Like many scientific disciplines, dynamical biochemical modeling is hindered by irreproducible results. This limits the utility of biochemical models by making them difficult to understand, trust, or reuse. We comprehensively list the best practices that biochemical modelers should follow to build reproducible biochemical model artifacts-all data, model descriptions, and custom software used by the model-that can be understood and reused. The best practices provide advice for all steps of a typical biochemical modeling workflow in which a modeler collects data; constructs, trains, simulates, and validates the model; uses the predictions of a model to advance knowledge; and publicly shares the model artifacts. The best practices emphasize the benefits obtained by using standard tools and formats and provides guidance to modelers who do not or cannot use standards in some stages of their modeling workflow. Adoption of these best practices will enhance the ability of researchers to reproduce, understand, and reuse biochemical models.


Assuntos
Simulação por Computador/normas , Biologia de Sistemas/métodos , Humanos
2.
Biophys J ; 114(2): 493-501, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29401446

RESUMO

Asthma is fundamentally a disease of airway constriction. Due to a variety of experimental challenges, the dynamics of airways are poorly understood. Of specific interest is the narrowing of the airway due to forces produced by the airway smooth muscle wrapped around each airway. The interaction between the muscle and the airway wall is crucial for the airway constriction that occurs during an asthma attack. Although cross-bridge theory is a well-studied representation of complex smooth muscle dynamics, and these dynamics can be coupled to the airway wall, this comes at significant computational cost-even for isolated airways. Because many phenomena of interest in pulmonary physiology cannot be adequately understood by studying isolated airways, this presents a significant limitation. We present a distribution-moment approximation of this coupled system and study the validity of the approximation throughout the physiological range. We show that the distribution-moment approximation is valid in most conditions, and we explore the region of breakdown. These results show that in many situations, the distribution-moment approximation is a viable option that provides an orders-of-magnitude reduction in computational complexity; not only is this valuable for isolated airway studies, but it moreover offers the prospect that rich ASM dynamics might be incorporated into interacting airway models where previously this was precluded by computational cost.


Assuntos
Fenômenos Mecânicos , Modelos Biológicos , Músculo Liso/fisiologia , Fenômenos Fisiológicos Respiratórios , Fenômenos Biomecânicos , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...