Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultramicroscopy ; 185: 5-14, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29145031

RESUMO

Twin detection via EBSD can be particularly challenging due to the fine scale of certain twin types - for example, compression and double twins in Mg. Even when a grid of sufficient resolution is chosen to ensure scan points within the twins, the interaction volume of the electron beam often encapsulates a region that contains both the parent grain and the twin, confusing the twin identification process. The degradation of the EBSD pattern results in a lower image quality metric, which has long been used to imply potential twins. However, not all bands within the pattern are degraded equally. This paper exploits the fact that parent and twin lattices share common planes that lead to the quality of the associated bands not degrading; i.e. common planes that exist in both grains lead to bands of consistent intensity for scan points adjacent to twin boundaries. Hence, twin boundaries in a microstructure can be recognized, even when they are associated with thin twins. Proof of concept was performed on known twins in Inconel 600, Tantalum, and Magnesium AZ31. This method was then used to search for undetected twins in a Mg AZ31 structure, revealing nearly double the number of twins compared with those initially detected by standard procedures.

2.
Ultramicroscopy ; 148: 132-145, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25461590

RESUMO

Electron Backscatter Diffraction (EBSD) has proven to be a useful tool for characterizing the crystallographic orientation aspects of microstructures at length scales ranging from tens of nanometers to millimeters in the scanning electron microscope (SEM). With the advent of high-speed digital cameras for EBSD use, it has become practical to use the EBSD detector as an imaging device similar to a backscatter (or forward-scatter) detector. Using the EBSD detector in this manner enables images exhibiting topographic, atomic density and orientation contrast to be obtained at rates similar to slow scanning in the conventional SEM manner. The high-speed acquisition is achieved through extreme binning of the camera-enough to result in a 5 × 5 pixel pattern. At such high binning, the captured patterns are not suitable for indexing. However, no indexing is required for using the detector as an imaging device. Rather, a 5 × 5 array of images is formed by essentially using each pixel in the 5 × 5 pixel pattern as an individual scattered electron detector. The images can also be formed at traditional EBSD scanning rates by recording the image data during a scan or can also be formed through post-processing of patterns recorded at each point in the scan. Such images lend themselves to correlative analysis of image data with the usual orientation data provided by and with chemical data obtained simultaneously via X-Ray Energy Dispersive Spectroscopy (XEDS).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...