Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36678801

RESUMO

We have previously described the remarkable capacity of radioiodinated alkyl phospholipids to be sequestered and retained by a variety of tumors in vivo. We have already established the influence of certain structural parameters of iodinated alkyl phospholipids on tumor avidity, such as stereochemistry at the sn-2 carbon of alkylglycerol phosphocholines, meta-or para-position of iodine in the aromatic ring of phenylalkyl phosphocholines, and the length of the alkyl chain in alkyl phospholipids. In order to determine the additional structural requirements for tumor uptake and retention, three new radioiodinated alkylphospholipid analogs, 2-4, were synthesized as potential tumor imaging agents. Polar head groups were modified to determine structure-tumor avidity relationships. The trimethylammonio group in 1 was substituted with a hydrogen atom in 2, an ammonio group in 3 and a tertiary butyl group in 4. All analogs were separately labeled with iodine-125 or iodine-124 and administered to Walker 256 tumor-bearing rats or human PC-3 tumor-bearing SCID mice, respectively. Tumor uptake was assessed by gamma-camera scintigraphy (for [I-125]-labeled compounds) and high-resolution micro-PET scanning (for [I-124]-labeled compounds). It was found that structural modifications in the polar head group of alkyl phospholipids strongly influenced the tumor uptake and tissue distribution of these compounds in tumor-bearing animals. Phosphoethanolamine analog 3 (NM401) displayed a very slight accumulation in tumor as compared with phosphocholine analog 1 (NM346). Analogs 2 (NM400) and 4 (NM402) lacking the positively charged nitrogen atom failed to display any tumor uptake and localized primarily in the liver. This study provided important insights regarding structural requirements for tumor uptake and retention. Replacement of the quaternary nitrogen in the alkyl phospholipid head group with non-polar substituents resulted in loss of tumor avidity.

2.
J Med Chem ; 49(7): 2155-65, 2006 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-16570911

RESUMO

Radioiodinated phospholipid ether analogues have shown a remarkable ability to selectively accumulate in a variety of human and animal tumors in xenograft and spontaneous tumor rodent models. It is believed that this tumor avidity arises as a consequence of metabolic differences between tumor and corresponding normal tissues. The results of this study indicate that one factor in the tumor retention of these compounds in tumors is the length of the alkyl chain that determines their hydrophobic properties. Decreasing the chain length from C12 to C7 resulted in little or no tumor accumulation and rapid clearance of the compound in tumor-bearing rats within 24 h of administration. Increasing the chain length had the opposite effect, with the C15 and C18 analogues displaying delayed plasma clearance and enhanced tumor uptake and retention in tumor-bearing rats. Tumor uptake displayed by propanediol analogues NM-412 and NM-413 was accompanied by high levels of liver and abdominal radioactivity 24 h postinjection to tumor-bearing rats. Addition of a 2-O-methyl moiety to the propanediol backbone also retarded tumor uptake significantly. A direct comparison between NM-404 and its predecessor, NM-324, in human PC-3 tumor bearing immune-compromised mice revealed a dramatic enhancement in both tumor uptake and total body elimination of NM-404 relative to NM-324. On the basis of imaging and tissue distribution studies in several rodent tumor models, the C18 analogue, NM-404, was chosen for follow-up evaluation in human lung cancer patients. Preliminary results have been extremely promising in that selective uptake and retention of the agent in tumors is accompanied by rapid clearance of background radioactivity from normal tissues, especially those in the abdomen. These results strongly suggest that extension of the human trials to include other cancers is warranted, especially when NM-404 is radiolabeled with iodine-124, a new commercially available positron-emitting isotope. The relatively long physical half-life of 4 days afforded by this isotope appears well-suited to the pharmacodynamic profile of NM-404.


Assuntos
Éteres Fosfolipídicos/síntese química , Fosforilcolina/análogos & derivados , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Radioisótopos do Iodo , Rim/metabolismo , Fígado/metabolismo , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos SCID , Transplante de Neoplasias , Éteres Fosfolipídicos/química , Éteres Fosfolipídicos/farmacocinética , Fosforilcolina/síntese química , Fosforilcolina/química , Fosforilcolina/farmacocinética , Coelhos , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Distribuição Tecidual , Testes de Toxicidade Aguda , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...