Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathog Dis ; 822024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38684476

RESUMO

We have demonstrated previously that TNF-α-producing CD8+ T cells mediate chlamydial pathogenesis, likely in an antigen (Ag)-specific fashion. Here we hypothesize that inhibition of Ag-specific CD8+ T cell response after immunization and/or challenge would correlate with protection against oviduct pathology induced by a protective vaccine regimen. Intranasal (i.n.) live chlamydial elementary body (EB), intramuscular (i.m.) live EB, or i.n. irrelevant antigen, bovine serum albumin (BSA), immunized animals induced near-total protection, 50% protection, or no protection, respectively against oviduct pathology following i.vag. C. muridarum challenge. In these models, we evaluated Ag-specific CD8+ T cell cytokine response at various time-periods after immunization or challenge. The results show protective efficacy of vaccine regimens correlated with reduction of Ag-specific CD8+ T cell TNF-α responses following i.vag. chlamydial challenge, not after immunization. Depletion of CD4+ T cells abrogated, whereas adoptive transfer of Ag-specific CD4+ T cells induced the significant reduction of Ag-specific CD8+ T cell TNF-α response after chlamydial challenge. In conclusion, protective anti-chlamydial vaccine regimens induce Ag-specific CD4+ T cell response that mediate early inhibition of pathogenic CD8+ T cell response following challenge and may serve as a predictive biomarker of protection against Chlamydia -induced chronic pathologies.


Assuntos
Vacinas Bacterianas , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Infecções por Chlamydia , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD4-Positivos/imunologia , Infecções por Chlamydia/imunologia , Infecções por Chlamydia/prevenção & controle , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Feminino , Camundongos , Modelos Animais de Doenças , Fator de Necrose Tumoral alfa/metabolismo , Chlamydia muridarum/imunologia
2.
Comp Med ; 72(4): 230-242, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35803706

RESUMO

Chlamydia muridarum (Cm) was detected in 2 colonies of mice with lymphoplasmacytic pulmonary infiltrates by using PCR and immunohistochemistry. This discovery was unexpected, as Cm infection had not been reported in laboratory mice since the 1940s. A Cm specific PCR assay was developed and testing implemented for the resident colonies of 8 vivaria from 3 academic institutions, 58 incoming mouse shipments from 39 academic institutions, and mice received from 55 commercial breeding colonies (4 vendors). To estimate Cm's global prevalence in research colonies, a database containing 11,387 metagenomic fecal microbiota samples from 120 institutions and a cohort of 900 diagnostic samples from 96 institutions were examined. Results indicate significant prevalence among academic institutions, with Cm detected in 63% of soiled bedding sentinels from 3 institutions; 33% of incoming mouse shipments from 39 academic institutions; 14% of 120 institutions submitting microbiota samples; and 16% of the diagnostic sample cohort. All samples from commercial breeding colonies were negative. In addition, naïve NOD. Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice exposed to Cm-shedding mice and/or their soiled bedding developed clinical disease at 21 to 28 d after exposure. These mice had a moderate-to-severe histiocytic and neutro- philic bronchointerstitial pneumonia, with their respiratory epithelium demonstrating inclusions, chlamydial major outer membrane protein immunostaining, and hybridization with a Cm reference sequence (GenBank accession no. U68436). Cm was isolated from lungs, cecum, and feces of a Cm-infected NSG mouse by using HeLa 229 cells. The considerable prevalence of Cm is likely due to widespread global interinstitutional distribution of unique mouse strains and failure to recognize that some of these mice were from enzootically infected colonies. Given that experimental Cm colonization of mice results in a robust immune response and, on occasion, pathology, natural infection may confound experimental results. Therefore, Cm should be excluded and eradicated from enzootically infected mouse colonies.


Assuntos
Chlamydia muridarum , Animais , Fezes , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Reação em Cadeia da Polimerase
3.
Microbes Infect ; 21(2): 104-108, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30292879

RESUMO

The host immune responses that mediate Chlamydia-induced chronic disease sequelae are incompletely understood. The role of TNF-α, TNF receptor 1 (TNFR1), and TNF receptor 2 (TNFR2), in Chlamydia pneumoniae (CPN)-induced atherosclerosis was studied using the high-fat diet-fed male C57BL/6J mouse model. Following intranasal CPN infection, TNF-α knockout (KO), TNFR1 KO, TNFR2 KO, and TNFR 1/2 double-knockout, displayed comparable serum anti-chlamydial antibody response, splenic antigen-specific cytokine response, and serum cholesterol profiles compared to wild type (WT) animals. However, atherosclerotic pathology in each CPN-infected KO mouse group was reduced significantly compared to WT mice, suggesting that both TNFR1 and TNFR2 promote CPN-induced atherosclerosis.


Assuntos
Aterosclerose/imunologia , Infecções por Chlamydophila/imunologia , Chlamydophila pneumoniae/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Administração Intranasal , Animais , Anticorpos Antibacterianos/sangue , Aterosclerose/microbiologia , Aterosclerose/patologia , Infecções por Chlamydophila/microbiologia , Infecções por Chlamydophila/patologia , Colesterol/sangue , Citocinas/metabolismo , Dieta Hiperlipídica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Tipo II do Fator de Necrose Tumoral/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
4.
Immunol Cell Biol ; 97(1): 85-91, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30051926

RESUMO

We have shown previously that intranasal vaccination with recombinant chlamydial protease-like activity factor (rCPAF: antigen) and interleukin-12 (IL-12) as an adjuvant induces robust protection against pathological consequences of female genital tract infection with Chlamydia muridarum, a closely related species and a rodent model for the human pathogen Chlamydia trachomatis. Another related species Chlamydia pneumoniae, a human respiratory pathogen, has been associated with exacerbation of atherosclerotic pathology. CPAF is highly conserved among Chlamydia spp. leading us to hypothesize that immunization with rCPAF with IL-12 will protect against high-fat diet (HFD) and C. pneumoniae-induced acceleration of atherosclerosis. rCPAF ± IL-12 immunization induced robust splenic antigen (Ag)-specific IFN-γ and TNF-α production and significantly elevated serum total anti-CPAF Ab, IgG2c, and IgG1 antibody levels compared to mock or IL-12 alone groups. The addition of IL-12 to rCPAF significantly elevated splenic Ag-specific IFN-γ production and IgG2c/IgG1 anti-CPAF antibody ratio. Following intranasal C. pneumoniae challenge and HFD feeding, rCPAF ± IL-12-immunized mice displayed significantly enhanced splenic IFN-γ, not TNF-α, response on days 6 and 9 after challenge, and significantly reduced lung chlamydial burden on day 9 post-challenge compared to mock- or IL-12-immunized mice. Importantly, rCPAF ± IL-12-immunized mice displayed significantly reduced atherosclerotic pathology in the aortas after C. pneumoniae challenge. Serum cholesterol levels were comparable between the groups suggesting that the observed differences in pathology were due to protective immunity against the infection. Together, these results confirm and extend our previous observations that CPAF is a promising candidate antigen for a multisubunit vaccine regimen to protect against Chlamydia-induced pathologies, including atherosclerosis.


Assuntos
Aterosclerose/imunologia , Infecções por Chlamydophila/prevenção & controle , Chlamydophila pneumoniae/imunologia , Endopeptidases/administração & dosagem , Interleucina-12/administração & dosagem , Proteínas Recombinantes/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Administração Intranasal , Animais , Antígenos de Bactérias/administração & dosagem , Antígenos de Bactérias/imunologia , Aterosclerose/etiologia , Aterosclerose/prevenção & controle , Infecções por Chlamydophila/complicações , Endopeptidases/genética , Endopeptidases/imunologia , Imunogenicidade da Vacina , Interleucina-12/imunologia , Camundongos , Proteínas Recombinantes/imunologia
5.
BMC Res Notes ; 11(1): 361, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880030

RESUMO

OBJECTIVE: This study aims to eliminate Mycoplasma spp. contamination from laboratory stocks of Chlamydia spp. by in vivo passage or by plaque assay. RESULTS: We have described two methods of eliminating Mycoplasma contamination from Chlamydia laboratory stocks. We conclude that Mycoplasma species commonly contaminating chlamydial stocks do not survive passage in mice. Chlamydia may also be derived Mycoplasma-free by plaque assay.


Assuntos
Chlamydia , Técnicas Genéticas , Técnicas Microbiológicas/métodos , Mycoplasma , Animais , Feminino , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Reação em Cadeia da Polimerase
6.
Wellcome Open Res ; 3: 25, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29657985

RESUMO

Background: Research in chlamydial genetics is challenging because of its obligate intracellular developmental cycle. In vivo systems exist that allow studies of different aspects of basic biology of chlamydiae, the murine Chlamydia muridarum model is one of great importance and thus an essential research tool. C. muridarum carries a plasmid that has a role in virulence.  Our aim was to compare and contrast the C. muridarum plasmid-free phenotype with that of a chromosomally isogenic plasmid-bearing strain, through the inclusion phase of the developmental cycle. Methods: We measured infectivity for plasmid bearing and plasmid-cured C. muridarum by inclusion forming assays in McCoy cells and in parallel bacterial chromosome replication by quantitative PCR, throughout the developmental cycle. In addition to these studies, we have carefully monitored chlamydial inclusion formation by confocal microscopy and transmission electron microscopy. A new E.coli/chlamydial shuttle vector (pNigg::GFP) was constructed using standard cloning technology and used to transform C. muridarum for further phenotypic studies. Results: We have advanced the definition of the chlamydial phenotype away from the simple static observation of mature inclusions and redefined the C. muridarum plasmid-based phenotype on growth profile and inclusion morphology. Our observations on the growth properties of plasmid-cured C. muridarum challenge the established interpretations, especially with regard to inclusion growth kinetics. Introduction of the shuttle plasmid pNigg::GFP into plasmid-cured C. muridarum restored the wild-type plasmid-bearing phenotype and confirmed that loss of the plasmid was the sole cause for the changes in growth and chromosomal replication. Conclusions: Accurate growth curves and sampling at multiple time points throughout the developmental cycle is necessary to define plasmid phenotypes.  There are subtle but important (previously unnoticed) differences in the overall growth profile of plasmid-bearing and plasmid-free C. muridarum.  We have proven that the differences described are solely due to the plasmid pNigg.

7.
Curr Top Microbiol Immunol ; 412: 183-215, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-27370346

RESUMO

Chlamydial infections lead to a number of clinically relevant diseases and induce significant morbidity in human populations. It is generally understood that certain components of the host immune response to infection also mediate such disease pathologies. A clear understanding of pathogenic mechanisms will enable us to devise better preventive and/or intervention strategies to mitigate the morbidity caused by these infections. Over the years, numerous studies have been conducted to explore the immunopathogenic mechanisms of Chlamydia-induced diseases of the eye, reproductive tract, respiratory tract, and cardiovascular systems. In this article, we provide an overview of the diseases caused by Chlamydia, animal models used to study disease pathology, and a historical context to the efforts to understand chlamydial pathogenesis. Furthermore, we discuss recent findings regarding pathogenesis, with an emphasis on the role of the adaptive immune response in the development of chlamydial disease sequelae. Finally, we summarize the key insights obtained from studies of chlamydial pathogenesis and avenues that remain to be explored in order to inform the next steps of vaccine development against chlamydial infections.


Assuntos
Infecções por Chlamydia/imunologia , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/imunologia , Chlamydia trachomatis/patogenicidade , Imunidade Adaptativa , Animais , Modelos Animais de Doenças , Humanos
8.
Front Microbiol ; 9: 3269, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30700982

RESUMO

Chlamydia is the most frequently reported sexually transmitted bacteria causing 2.9 million infections annually in the United States. Diagnosis, treatment, and sequelae of chlamydial disease cost billions of dollars each year in the United States alone. Considering that a heparin sulfate-like cell surface receptor is involved in Chlamydia infections, we reasoned that sulfated and sulfonated mimics of heparin sulfate would be useful in topical prophylactic prevention of Chlamydia. In this study, we tested a small, synthetic sulfated agent sulfated pentagalloyl glucoside (SPGG) and three synthetic sulfonated polymers PSS and SPS with average molecular weight in the range of 11 to 1000 kDa for inhibition against Chlamydia. Infection of HeLa cells with C. muridarum or C. trachomatis in the presence of increasing concentrations of SPGG or sulfonated polymers were quantified by immunofluorescence of Chlamydia inclusions. To determine whether in vitro pre-treatment of SPGG inhibits infection of C. muridarum, HeLa monolayers were incubated with SPGG-containing media, and then infected with Chlamydia. Our in vitro results show that SPGG pre-treatment inhibits Chlamydia infection in a dose-dependent manner. In addition, we further determined if SPGG treatment has an inhibitory effect during infection, therefore cell monolayers were infected with C. muridarum in the concurrent presence of SPGG. Our results show that SPGG inhibits C. muridarum infection with an IC50 at 10 µg/ml levels. We also tested the inhibitory effect of synthetic polymers PSS and SPS against Chlamydia and found inhibition of C. muridarum and C. trachomatis infections with IC50 ranging from 0.3 to 0.8 µg/ml. SPGG, PSS, and SPS inhibit formation of Chlamydia inclusions in a concentration-dependent manner. For evaluation of in vivo efficacy of the most effective agent in blocking C. muridarum, SPGG, we intravaginally pre-treated mice with SPGG before infection with C. muridarum. Cervical swabs were collected post-infection to quantify Chlamydia inclusions in vitro. Our in vivo data show that the SPGG-treated group has a statistically significant reduction of infection compared to the no-treatment control. Overall, our results show that SPGG could serve as a promising topical inhibitor for preventing Chlamydia infection.

9.
J Immunol Methods ; 445: 23-30, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28283408

RESUMO

BACKGROUND: Urogenital infection with Chlamydia trachomatis is the most commonly diagnosed sexually transmitted infection in the developed world. Accurate measurement and therefore understanding the seroprevalence of urogenital C. trachomatis infections requires a rigorously optimised and validated ELISA. Previous ELISAs based on the C. trachomatis plasmid-encoded protein, PGP3, have been described but lack standardisation and critical controls or use a less common PGP3 as the capture antigen. METHODOLOGY/PRINCIPAL FINDINGS: A sensitive and specific indirect ELISA was developed based on recombinant PGP3 derived from a urogenital strain of C. trachomatis, serovar E (pSW2), using a rigorous validation protocol. Serum samples were collected from 166 genitourinary medicine (GUM) clinic patients diagnosed as positive or negative for urogenital C. trachomatis infection by nucleic acid amplification testing (NAATs). Overall sensitivity and specificity compared to NAATs was 68.18% and 98.0%, respectively. Sensitivities for female and male samples were 71.93% and 64.15%, respectively. Comparison of samples from these patients diagnosed positive for C. trachomatis by NAAT and patients diagnosed negative by NAAT revealed statistical significance (p≤0.0001). CONCLUSIONS: We have developed and validated a sensitive and specific ELISA to detect anti-PGP3 antibodies as an indicator of past and current infection to C. trachomatis using PGP3 from a common urogenital strain. It is anticipated that this assay will be used for seroepidemiological analysis of urogenital C. trachomatis in populations.


Assuntos
Anticorpos/análise , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Infecções por Chlamydia/imunologia , Chlamydia trachomatis/imunologia , Ensaio de Imunoadsorção Enzimática , Anticorpos/imunologia , Antígenos de Bactérias/sangue , Antígenos de Bactérias/genética , Proteínas de Bactérias/sangue , Proteínas de Bactérias/genética , Infecções por Chlamydia/diagnóstico , Clonagem Molecular , Proteínas Recombinantes/sangue , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
10.
Pathog Dis ; 74(3)2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26733499

RESUMO

To determine if Chlamydia muridarum, or other chlamydiae, are enzootic in rodents, we probed a serum bank of wild Peromyscus spp. mice for immunoglobulin G-antibody reactivity to ultraviolet light-inactivated C. muridarum elementary bodies (EBs) using an enzyme-linked immunoassay. Applying a cut-off for a positive reaction of OD(405) nm = 0.1 at a 1:20 dilution, we found titratable antibody reactivity in 190 of 247 specimens surveyed (77%, mean OD(405) = 0.33 ± 0.26, range = 0.11-1.81, median = 0.25). In addition, serum samples were obtained from a colony of specific pathogen-free Peromyscus spp. maintained at the University of South Carolina and six of 12 samples were reactive (50%, mean OD(405) = 0.19 +/- 0.08, range = 0.1-0.32, median = 0.18). Lastly, 40 additional wild Peromyscus spp. were captured in a disparate region of Midwestern USA and 22 serum specimens were reactive (55%, mean OD(405) = 0.22 +/- 0.11, range = 0.1-0.48, median = 0.2). Specificity of selected reactive sera for chlamydial antigen was confirmed on Western blot using resolved purified EBs as the detecting antigen. From tissues removed from several mice at necropsy, the gene for chlamydial 16S ribosomal ribonucleic acid (rRNA) was amplified by polymerase chain reaction (PCR). Positive samples of 16S rRNA were subjected to additional PCR for the major outer membrane protein gene (ompA). The amplicons of three select ompA positive samples were sequenced with ≥99% homology with C. muridarum. Our findings indicate that chlamydial infection is enzootic for Peromyscus spp., and that C. muridarum, or a closely related species or strain, is likely the agent in the tested rodent species.


Assuntos
Anticorpos Antibacterianos/sangue , Proteínas da Membrana Bacteriana Externa/genética , Infecções por Chlamydia/epidemiologia , Infecções por Chlamydia/imunologia , Chlamydia muridarum/imunologia , Imunoglobulina G/sangue , Animais , Anticorpos Antibacterianos/imunologia , Sequência de Bases , Infecções por Chlamydia/microbiologia , Chlamydia muridarum/genética , DNA Bacteriano/genética , Ensaio de Imunoadsorção Enzimática , Imunoglobulina G/imunologia , Iowa/epidemiologia , Peromyscus , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
11.
Immunol Cell Biol ; 94(2): 208-12, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26323581

RESUMO

Genital chlamydial infections lead to severe upper reproductive tract pathology in a subset of untreated women. We demonstrated previously that tumor necrosis factor (TNF)-α-producing CD8(+) T cells contribute significantly to chlamydial upper genital tract pathology in female mice. In addition, we observed that minimal chlamydial oviduct pathology develops in OT-1 transgenic (OT-1) mice, wherein the CD8(+) T-cell repertoire is restricted to recognition of the ovalbumin peptide Ova(257-264), suggesting that non-Chlamydia-specific CD8(+) T cells may not be responsible for chlamydial pathogenesis. In the current study, we evaluated whether antigen-specific CD8(+) T cells mediate chlamydial pathology. Groups of wild-type (WT) C57BL/6J, OT-1 mice, and OT-1 mice replete with WT CD8(+) T cells (1 × 10(6) cells per mouse intravenously) were infected intravaginally with C. muridarum (5 × 10(4) IFU/mouse). Serum total anti-Chlamydia antibody and total splenic anti-Chlamydia interferon (IFN)-γ and TNF-α responses were comparable among the three groups of animals. However, Chlamydia-specific IFN-γ and TNF-α production from purified splenic CD8(+) T cells of OT-1 mice was minimal, whereas responses in OT-1 mice replete with WT CD8(+) T cells were comparable to those in WT animals. Vaginal chlamydial clearance was comparable between the three groups of mice. Importantly, the incidence and severity of oviduct and uterine horn pathology was significantly reduced in OT-1 mice but reverted to WT levels in OT-1 mice replete with WT CD8(+) T cells. Collectively, these results demonstrate that Chlamydia-specific CD8(+) T cells contribute significantly to upper genital tract pathology.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por Chlamydia/imunologia , Chlamydia muridarum/imunologia , Genitália Feminina/imunologia , Animais , Anticorpos Antibacterianos/sangue , Linfócitos T CD8-Positivos/microbiologia , Células Cultivadas , Feminino , Genitália Feminina/microbiologia , Interferon gama/metabolismo , Depleção Linfocítica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ovalbumina/imunologia , Fragmentos de Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Fator de Necrose Tumoral alfa/metabolismo
12.
Pathog Dis ; 73(7)2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26220574

RESUMO

Chlamydia pneumoniae is a community-acquired bacterial pathogen that has been strongly associated with exacerbation of atherosclerosis. We evaluated the role of CD8(+) T cells in the C57BL/6J mouse model of C. pneumoniae-induced atherosclerosis. Groups of 4- to 6-week-old male wild-type C57BL/6J (WT) mice and mice with a gene deficiency in CD8α (CD8 KO mice) were infected with C. pneumoniae and fed a high fat (HF) diet. Serum antibody response and serum cholesterol were comparable between infected CD8 KO and WT mice. However, infected CD8 KO mice displayed significantly reduced atherosclerotic plaque lesions on day 100 compared to infected WT mice, at a level comparable to both uninfected WT and CD8 KO mice fed the HF diet. Moreover, repletion of CD8 KO mice with WT CD8(+) T cells (1 × 10(7) cells/mouse intravenously) at the time of infection reverted atherosclerotic plaque lesions to WT levels. These results demonstrate that CD8(+) T cells play an important role in mediating C. pneumoniae-induced exacerbation of atherosclerotic pathology.


Assuntos
Aterosclerose/etiologia , Aterosclerose/patologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Chlamydophila/complicações , Infecções por Chlamydophila/patologia , Chlamydophila pneumoniae/imunologia , Animais , Antígenos CD8/genética , Dieta Hiperlipídica , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout
13.
Pathog Dis ; 73(1): 1-12, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25673672

RESUMO

We have previously shown that Chlamydia muridarum has multiple genomic variants that concomitantly vary in their in vitro and in vivo phenotype. Herein, we used real-time polymerase chain reaction-based genotyping assays to query plaque-cloned isolates of C. muridarum for the frequency of eight selected polymorphisms. These strains had no history of passage in vivo since their original isolation from laboratory mice. There was significant variance in the frequency of two of the eight polymorphisms assessed with the remaining exhibiting a low rate of variance. To determine if any of these polymorphisms were more favorable for in vivo conditions, we blindly passaged non-clonal C. muridarum three times at 7-day intervals through the urogenital tract of mice. Seven of the eight polymorphisms varied in frequency following in vivo passage and four of these varied between C. muridarum strains. Selected isolates displayed variable growth rates and cytopathic effect in vitro. We conclude that multiple genotypic variants are present within the existing known C. muridarum strains and that the frequency of these variants changes upon introduction into the mouse host. These findings lend support to the concept that genotypic proportional representation in a chlamydial population is dynamic and adaptive.


Assuntos
Chlamydia muridarum/classificação , Polimorfismo Genético , Animais , Infecções por Chlamydia/microbiologia , Chlamydia muridarum/genética , Chlamydia muridarum/crescimento & desenvolvimento , Chlamydia muridarum/isolamento & purificação , Feminino , Doenças Urogenitais Femininas/microbiologia , Genótipo , Técnicas de Genotipagem , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Reação em Cadeia da Polimerase em Tempo Real
14.
J Infect Dis ; 211(12): 2014-22, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25552370

RESUMO

BACKGROUND: We demonstrated previously that tumor necrosis factor α (TNF-α)-producing Chlamydia-specific CD8(+) T cells cause oviduct pathological sequelae. METHODS: In the current study, we used wild-type C57BL/6J (WT) mice with a deficiency in genes encoding TNF receptor superfamily member 1a (TNFR1; TNFR1 knockout [KO] mice), TNF receptor superfamily member 1b (TNFR2; TNFR2 KO mice), and both TNFR1 and TNFR2 (TNFR1/2 double KO [DKO] mice) and mix-match adoptive transfers of CD8(+) T cells to study chlamydial pathogenesis. RESULTS: TNFR1 KO, TNFR2 KO, and TNFR1/2 DKO mice displayed comparable clearance of primary or secondary genital Chlamydia muridarum infection but significantly reduced oviduct pathology, compared with WT animals. The Chlamydia-specific total cellular cytokine response in splenic and draining lymph nodes and the antibody response in serum were comparable between the WT and KO animals. However, CD8(+) T cells from TNFR2 KO mice displayed significantly reduced activation (CD11a expression and cytokine production), compared with TNFR1 KO or WT animals. Repletion of TNFR2 KO mice with WT CD8(+) T cells but not with TNFR2 KO CD8(+) T cells and repletion of TNFR1 KO mice with either WT or TNFR1 KO CD8(+) T cells restored oviduct pathology to WT levels in both KO groups. CONCLUSIONS: Collectively, these results demonstrate that TNFR2-bearing CD8(+) T cells and TNFR1-bearing non-CD8(+) T cells contribute significantly to oviduct pathology following genital chlamydial infection.


Assuntos
Linfócitos T CD8-Positivos/química , Infecções por Chlamydia/patologia , Receptores Tipo II do Fator de Necrose Tumoral/análise , Receptores Tipo I de Fatores de Necrose Tumoral/análise , Infecções do Sistema Genital/patologia , Animais , Feminino , Camundongos Endogâmicos C57BL , Camundongos Knockout
15.
Pathog Dis ; 72(1): 19-23, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24700815

RESUMO

The development of genetic transformation technology for Chlamydia trachomatis using its endogenous plasmid has recently been described. Chlamydia muridarum cannot be transformed by the C. trachomatis plasmid, indicating a barrier between chlamydial species. To determine which regions of the plasmid conferred the species specificity, we used the novel approach of transforming wild-type C. muridarum carrying the endogenous plasmid pNigg and forced recombination with the C. trachomatis vector pGFP::SW2 which carries the complete C. trachomatis plasmid (pSW2). Penicillin and chloramphenicol-resistant transformants expressing the green fluorescent protein were selected. Recovery of plasmids from these transformants showed they were recombinants. The differences between the pSW2 and pNigg allowed identification of the recombination breakpoints and showed that pGFP::SW2 had exchanged a ~ 1 kbp region with pNigg covering CDS 2. The recombinant plasmid (pSW2NiggCDS2) is maintained under antibiotic selection when transformed into plasmid-cured C. muridarum. The ability to select for recombinants in C. muridarum shows that the barrier is not at transformation, but at the level of plasmid replication or maintenance. Our studies show that CDS 2, together with adjoining sequences, is the main determinant of plasmid tropism.


Assuntos
Chlamydia muridarum/genética , Chlamydia trachomatis/genética , Replicação do DNA , Plasmídeos , Recombinação Genética , Seleção Genética , Transformação Bacteriana
16.
Vaccines (Basel) ; 2(3): 515-36, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26344743

RESUMO

Conventional vaccine strategies have been highly efficacious for several decades in reducing mortality and morbidity due to infectious diseases. The bane of conventional vaccines, such as those that include whole organisms or large proteins, appear to be the inclusion of unnecessary antigenic load that, not only contributes little to the protective immune response, but complicates the situation by inducing allergenic and/or reactogenic responses. Peptide vaccines are an attractive alternative strategy that relies on usage of short peptide fragments to engineer the induction of highly targeted immune responses, consequently avoiding allergenic and/or reactogenic sequences. Conversely, peptide vaccines used in isolation are often weakly immunogenic and require particulate carriers for delivery and adjuvanting. In this article, we discuss the specific advantages and considerations in targeted induction of immune responses by peptide vaccines and progresses in the development of such vaccines against various diseases. Additionally, we also discuss the development of particulate carrier strategies and the inherent challenges with regard to safety when combining such technologies with peptide vaccines.

17.
Pathog Dis ; 70(1): 61-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24022847

RESUMO

We hypothesized that the plasmid of urogenital isolates of Chlamydia trachomatis would modulate infectivity and virulence in a mouse model. To test this hypothesis, we infected female mice in the respiratory or urogenital tract with graded doses of a human urogenital isolate of C. trachomatis, serovar F, possessing the cognate plasmid. For comparison, we inoculated mice with a plasmid-free serovar F isolate. Following urogenital inoculation, the plasmid-free isolate displayed significantly reduced infectivity compared with the wild-type strain with the latter yielding a 17-fold lower infectious dose to yield 50% infection. When inoculated via the respiratory tract, the plasmid-free isolate exhibited reduced infectivity and virulence (as measured by weight change) when compared to the wild-type isolate. Further, differences in infectivity, but not in virulence were observed in a C. trachomatis, serovar E isolate with a deletion within the plasmid coding sequence 1 when compared to a serovar E isolate with no mutations in the plasmid. We conclude that plasmid loss reduces virulence and infectivity in this mouse model. These findings further support a role for the chlamydial plasmid in infectivity and virulence in vivo.


Assuntos
Infecções por Chlamydia/genética , Chlamydia trachomatis/genética , Plasmídeos/genética , Sistema Urogenital/microbiologia , Virulência/genética , Animais , Modelos Animais de Doenças , Feminino , Genoma Bacteriano/genética , Camundongos , Sistema Respiratório/microbiologia
18.
PLoS One ; 8(9): e76664, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24073293

RESUMO

IL-17 is believed to be important for protection against extracellular pathogens, where clearance is dependent on neutrophil recruitment and local activation of epithelial cell defences. However, the role of IL-17 in protection against intracellular pathogens such as Chlamydia is less clear. We have compared (i) the course of natural genital tract C. muridarum infection, (ii) the development of oviduct pathology and (iii) the development of vaccine-induced immunity against infection in wild type (WT) BALB/c and IL-17 knockout mice (IL-17-/-) to determine if IL-17-mediated immunity is implicated in the development of infection-induced pathology and/or protection. Both the magnitude and duration of genital infection was significantly reduced in IL-17-/- mice compared to BALB/c. Similarly, hydrosalpinx was also greatly reduced in IL-17-/- mice and this correlated with reduced neutrophil and macrophage infiltration of oviduct tissues. Matrix metalloproteinase (MMP) 9 and MMP2 were increased in WT oviducts compared to IL-17-/- animals at day 7 post-infection. In contrast, oviducts from IL-17-/- mice contained higher MMP9 and MMP2 at day 21. Infection also elicited higher levels of Chlamydia-neutralizing antibody in serum of IL-17-/- mice than WT mice. Following intranasal immunization with C. muridarumMajor Outer Membrane Protein (MOMP) and cholera toxin plus CpG adjuvants, significantly higher levels of chlamydial MOMP-specific IgG and IgA were found in serum and vaginal washes of IL-17-/- mice. T cell proliferation and IFNγ production by splenocytes was greater in WT animals following in vitro re-stimulation, however vaccination was only effective at reducing infection in WT, not IL-17-/- mice. Intranasal or transcutaneous immunization protected WT but not IL-17-/- mice against hydrosalpinx development. Our data show that in the absence of IL-17, the severity of C. muridarum genital infection and associated oviduct pathology are significantly attenuated, however neither infection or pathology can be reduced further by vaccination protocols that effectively protect WT mice.


Assuntos
Vacinas Bacterianas/administração & dosagem , Infecções por Chlamydia/prevenção & controle , Chlamydia muridarum/patogenicidade , Interleucina-17/fisiologia , Infecções do Sistema Genital/microbiologia , Administração Intranasal , Animais , Proliferação de Células , Células Cultivadas , Infecções por Chlamydia/imunologia , Infecções por Chlamydia/patologia , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Imunização , Interferon gama/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/patologia , Oviductos/efeitos dos fármacos , Oviductos/imunologia , Oviductos/patologia , Infecções do Sistema Genital/imunologia , Infecções do Sistema Genital/patologia , Fatores de Tempo , Vagina/efeitos dos fármacos , Vagina/imunologia , Vagina/patologia
19.
Glycobiology ; 22(11): 1402-12, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22773448

RESUMO

Cell surface heparan sulfate (HS), a polysaccharide composed of alternating uronic acid and glucosamine residues, represents a common link that many sexually transmitted infections (STIs) require for infection. Variable modifications within the monomeric units of HS chains together with their unique structural conformations generate heterogeneity, which expands the ability of HS to bind a diverse array of host and microbial proteins. Recent advances made in the field of glycobiology have critically enhanced our understanding of HS and its interactions with microbes and their significance in important human diseases. The role of HS has been elaborated for several STIs to include those caused by herpes simplex virus, human immunodeficiency virus, human papillomavirus, and Chlamydia. In addition, gonorrhea, syphilis, and yeast infections are also dependent on the presence of HS on human target cells. Critical steps such as pathogen adhesion or binding to host cells followed by internalization to enhance intracellular survival and possible spread to other cells are mediated by HS. In addition, HS guided cell signaling plays a role in the development of angiogenesis and inflammation associated with many STIs. Past and ongoing investigations are providing new push for the development of HS-mimetics and analogs as novel prevention strategies against many different STIs. This review article summarizes the significance of HS in STIs and describes how emerging new products that target HS can be used to control the spread of STIs.


Assuntos
Heparitina Sulfato/metabolismo , Doenças Bacterianas Sexualmente Transmissíveis/microbiologia , Doenças Virais Sexualmente Transmissíveis/virologia , Alphapapillomavirus/patogenicidade , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Chlamydia/patogenicidade , HIV/patogenicidade , Heparitina Sulfato/biossíntese , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Doenças Bacterianas Sexualmente Transmissíveis/tratamento farmacológico , Doenças Virais Sexualmente Transmissíveis/tratamento farmacológico , Simplexvirus/patogenicidade
20.
FEMS Immunol Med Microbiol ; 60(1): 49-56, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20602634

RESUMO

We tested the hypothesis that a specific chemokine receptor, CXC chemokine receptor-2 (CXCR2), mediates acute inflammatory damage during chlamydial urogenital infection, which ultimately leads to the chronic sequelae of hydrosalpinx - a surrogate marker of infertility. Homozygous CXCR2 genetic knockouts (CXCR2-/-), heterozygous littermates (CXCR2+/-) or homozygous wild-type (wt) controls (CXCR2+/+) were infected intravaginally with Chlamydia muridarum. Although no change was observed in the infection in the lower genital tract based on CXCR zygosity, a delay in the ascension of infection into the upper genital tract was seen in CXCR2-/- mice. Significantly elevated peripheral blood neutrophil counts were observed in CXCR2-/- mice when compared with controls. Reduced rates of acute inflammatory indices were observed in the affected tissue, indicating reduced neutrophil extravasation capacity in the absence of CXCR2. Of note was a reduction in the postinfection development of hydrosalpinx that correlated with CXCR2 zygosity, with both CXCR2-/- (13%) and their CXCR2+/- (35%) littermates displaying significantly lower rates of hydrosalpinx formation than the wt CXCR2-sufficient mice (93%). We conclude that CXCR2 ligands are a major chemotactic signal that induces damaging acute inflammation and the resulting chronic pathology during the repair phase of the host response, but are dispensable for the resolution of infection.


Assuntos
Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/patologia , Chlamydia muridarum/patogenicidade , Doenças dos Genitais Femininos/microbiologia , Doenças dos Genitais Femininos/patologia , Receptores de Interleucina-8B/imunologia , Animais , Modelos Animais de Doenças , Feminino , Inflamação/imunologia , Inflamação/patologia , Contagem de Leucócitos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Neutrófilos/imunologia , Receptores de Interleucina-8B/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...