Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Green Chem ; 26(6): 3346-3355, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38505506

RESUMO

The nucleophilic ring opening of epoxides by carboxylic acids is an indispensable transformation for materials science and coating technologies. Due to this industrial significance, improvements in operational energy consumption and catalyst sustainability are highly desirable for this transformation. Herein, an efficient, environmentally benign and non-toxic halide free cooperative catalyst system based on an iron(iii) benzoate complex and guanidinium carbonate is reported. The novel catalyst system shows improved activity over onium halide catalysts under neat conditions and in several solvents, including anisole and nBuOAc. Detailed mechanistic studies using FeCl3/DMAP as a catalyst revealed the importance of a carboxylate bridged cationic trinuclear µ3-oxo iron cluster and guanidinium carbonate or DMAP as a carboxylate reservoir due to its superior activity.

2.
Chem Soc Rev ; 53(7): 3216-3223, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38381077

RESUMO

Metal-ligand cooperation, in which both the metal and the ligand of a transition metal complex actively participate in chemical transformations leading to enhanced reactivity or selectivity in chemical reactions, has emerged as a powerful and versatile concept in catalysis. This Viewpoint discusses the development trajectory of transition metal-based complexes as catalysts in (de)hydrogenative processes, in particular those cases where metal-ligand cooperation has been invoked to rationalise the observed high reactivities and excellent selectivities. The historical context, mechanistic aspects and current applications are discussed with the suggestion to explore the potential of the MLC mode of action of such catalysts in enantioselective transformations beyond (de)hydrogenative processes.

3.
Angew Chem Int Ed Engl ; 63(7): e202316785, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38133954

RESUMO

This paper presents a Mn(I)-catalysed methodology for the enantioselective hydrophosphination of terminal alkenyl aza-heteroarenes. The catalyst operates through H-P bond activation, enabling successful hydrophosphination of a diverse range of alkenyl-heteroarenes with high enantioselectivity. The presented protocol addresses the inherently low reactivity and the commonly encountered suboptimal enantioselectivities of these challenging substrates. As an important application we show that this method facilitates the synthesis of a non-symmetric tridentate P,N,P-containing ligand like structure in just two synthetic steps using a single catalytic system.

4.
ACS Sens ; 6(11): 3948-3956, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34666481

RESUMO

Fluorine (19F) magnetic resonance imaging (MRI) is severely limited by a low signal-to noise ratio (SNR), and tapping it for 19F drug detection in vivo still poses a significant challenge. However, it bears the potential for label-free theranostic imaging. Recently, we detected the fluorinated dihydroorotate dehydrogenase (DHODH) inhibitor teriflunomide (TF) noninvasively in an animal model of multiple sclerosis (MS) using 19F MR spectroscopy (MRS). In the present study, we probed distinct modifications to the CF3 group of TF to improve its SNR. This revealed SF5 as a superior alternative to the CF3 group. The value of the SF5 bioisostere as a 19F MRI reporter group within a biological or pharmacological context is by far underexplored. Here, we compared the biological and pharmacological activities of different TF derivatives and their 19F MR properties (chemical shift and relaxation times). The 19F MR SNR efficiency of three MRI methods revealed that SF5-substituted TF has the highest 19F MR SNR efficiency in combination with an ultrashort echo-time (UTE) MRI method. Chemical modifications did not reduce pharmacological or biological activity as shown in the in vitro dihydroorotate dehydrogenase enzyme and T cell proliferation assays. Instead, SF5-substituted TF showed an improved capacity to inhibit T cell proliferation, indicating better anti-inflammatory activity and its suitability as a viable bioisostere in this context. This study proposes SF5 as a novel superior 19F MR reporter group for the MS drug teriflunomide.


Assuntos
Crotonatos , Di-Hidro-Orotato Desidrogenase , Animais , Hidroxibutiratos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Nitrilas , Toluidinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...