Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(7): 110116, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38974967

RESUMO

Intra-tumoral phenotypic heterogeneity promotes tumor relapse and therapeutic resistance and remains an unsolved clinical challenge. Decoding the interconnections among different biological axes of plasticity is crucial to understand the molecular origins of phenotypic heterogeneity. Here, we use multi-modal transcriptomic data-bulk, single-cell, and spatial transcriptomics-from breast cancer cell lines and primary tumor samples, to identify associations between epithelial-mesenchymal transition (EMT) and luminal-basal plasticity-two key processes that enable heterogeneity. We show that luminal breast cancer strongly associates with an epithelial cell state, but basal breast cancer is associated with hybrid epithelial/mesenchymal phenotype(s) and higher phenotypic heterogeneity. Mathematical modeling of core underlying gene regulatory networks representative of the crosstalk between the luminal-basal and epithelial-mesenchymal axes elucidate mechanistic underpinnings of the observed associations from transcriptomic data. Our systems-based approach integrating multi-modal data analysis with mechanism-based modeling offers a predictive framework to characterize intra-tumor heterogeneity and identify interventions to restrict it.

2.
Transl Oncol ; 40: 101845, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38029508

RESUMO

Colorectal cancer (CRC) is highly heterogeneous with variable survival outcomes and therapeutic vulnerabilities. A commonly used classification system in CRC is the Consensus Molecular Subtypes (CMS) based on gene expression patterns. However, how these CMS categories connect to axes of phenotypic plasticity and heterogeneity remains unclear. Here, in our analysis of CMS-specific TCGA data and 101 bulk transcriptomic datasets, we found the epithelial phenotype score to be consistently positively correlated with scores of glycolysis, OXPHOS and FAO pathways, while PD-L1 activity scores positively correlated with mesenchymal phenotype scoring, revealing possible interconnections among plasticity axes. Single-cell RNA-sequencing analysis of patient samples revealed that that CMS2 and CMS3 subtype samples were relatively more epithelial as compared to CMS1 and CMS4. CMS1 revealed two subpopulations: one close to CMS4 (more mesenchymal) and the other closer to CMS2 or CMS3 (more epithelial), indicating a partial EMT-like behavior. Consistent observations were made in single-cell analysis of metabolic axes and PD-L1 activity scores. Together, our results quantify the patterns of two functional interconnected axes of phenotypic heterogeneity - EMT and metabolic reprogramming - in a CMS-specific manner in CRC.

3.
J R Soc Interface ; 20(208): 20230389, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37963558

RESUMO

Epithelial-mesenchymal transition (EMT) is an important axis of phenotypic plasticity-a hallmark of cancer metastasis. Raf kinase-B inhibitor protein (RKIP) and BTB and CNC homology 1 (BACH1) are reported to influence EMT. In breast cancer, they act antagonistically, but the exact nature of their roles in mediating EMT and associated other axes of plasticity remains unclear. Here, analysing transcriptomic data, we reveal their antagonistic trends in a pan-cancer manner in terms of association with EMT, metabolic reprogramming and immune evasion via PD-L1. Next, we developed and simulated a mechanism-based gene regulatory network that captures how RKIP and BACH1 engage in feedback loops with drivers of EMT and stemness. We found that RKIP and BACH1 belong to two antagonistic 'teams' of players-while BACH1 belonged to the one driving pro-EMT, stem-like and therapy-resistant cell states, RKIP belonged to the one enabling pro-epithelial, less stem-like and therapy-sensitive phenotypes. Finally, we observed that low RKIP levels and upregulated BACH1 levels associated with worse clinical outcomes in many cancer types. Together, our systems-level analysis indicates that the emergent dynamics of underlying regulatory network enable the antagonistic patterns of RKIP and BACH1 with various axes of cancer cell plasticity, and with patient survival data.


Assuntos
Neoplasias da Mama , Proteína de Ligação a Fosfatidiletanolamina , Humanos , Feminino , Proteína de Ligação a Fosfatidiletanolamina/genética , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Plasticidade Celular , Transição Epitelial-Mesenquimal , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo
4.
bioRxiv ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37873432

RESUMO

Intra-tumoral phenotypic heterogeneity promotes tumor relapse and therapeutic resistance and remains an unsolved clinical challenge. It manifests along multiple phenotypic axes and decoding the interconnections among these different axes is crucial to understand its molecular origins and to develop novel therapeutic strategies to control it. Here, we use multi-modal transcriptomic data analysis - bulk, single-cell and spatial transcriptomics - from breast cancer cell lines and primary tumor samples, to identify associations between epithelial-mesenchymal transition (EMT) and luminal-basal plasticity - two key processes that enable heterogeneity. We show that luminal breast cancer strongly associates with an epithelial cell state, but basal breast cancer is associated with hybrid epithelial/mesenchymal phenotype(s) and higher phenotypic heterogeneity. These patterns were inherent in methylation profiles, suggesting an epigenetic crosstalk between EMT and lineage plasticity in breast cancer. Mathematical modelling of core underlying gene regulatory networks representative of the crosstalk between the luminal-basal and epithelial-mesenchymal axes recapitulate and thus elucidate mechanistic underpinnings of the observed associations from transcriptomic data. Our systems-based approach integrating multi-modal data analysis with mechanism-based modeling offers a predictive framework to characterize intra-tumor heterogeneity and to identify possible interventions to restrict it.

5.
J Biol Eng ; 17(1): 17, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864480

RESUMO

BACKGROUND: Epithelial-mesenchymal plasticity (EMP) involves bidirectional transitions between epithelial, mesenchymal and multiple intermediary hybrid epithelial/mesenchymal phenotypes. While the process of epithelial-mesenchymal transition (EMT) and its associated transcription factors are well-characterised, the transcription factors that promote mesenchymal-epithelial transition (MET) and stabilise hybrid E/M phenotypes are less well understood. RESULTS: Here, we analyse multiple publicly-available transcriptomic datasets at bulk and single-cell level and pinpoint ELF3 as a factor that is strongly associated with an epithelial phenotype and is inhibited during EMT. Using mechanism-based mathematical modelling, we also show that ELF3 inhibits the progression of EMT. This behaviour was also observed in the presence of an EMT inducing factor WT1. Our model predicts that the MET induction capacity of ELF3 is stronger than that of KLF4, but weaker than that of GRHL2. Finally, we show that ELF3 levels correlates with worse patient survival in a subset of solid tumour types. CONCLUSION: ELF3 is shown to be inhibited during EMT progression and is also found to inhibit the progression of complete EMT suggesting that ELF3 may be able to counteract EMT induction, including in the presence of EMT-inducing factors, such as WT1. The analysis of patient survival data indicates that the prognostic capacity of ELF3 is specific to cell-of-origin or lineage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...