Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-8, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38910432

RESUMO

Myelin Oligodendrocyte Glycoprotein (MOG) is a transmembrane protein in the myelin sheath. It acts as an auto-antigen under certain unknown conditions causing demyelination, thus resulting in Myelin Oligodendrocyte Glycoprotein Antibody-associated Disease (MOGAD). The significance of glycosylation in the conformational dynamics of the extracellular region (EC1) of the MOG were evident from the previous computational studies. Here, in this study, we performed the molecular dynamics simulation of the entire human MOG in the myelin sheath for 100 ns using the NAMD program. The results indicated that the EC1 and cytoplasmic region (CP) dominate the conformational rigidity of the protein, and enhance its interaction with lipids. This in turn helps in maintaining the myelin integrity in the presence of glycan. The transmembrane regions have reduced interaction with lipids in the glycosylated system. Moreover, the C-terminal extracellular region 2 (EC2) behaves exactly opposite to that of EC1 in the glycan presence. This may be attributed to the glycosylation site in the EC1 region. Hence, not only the region EC1 (having 3 crucial epitopes) but even the CP region were important for understanding the proper function of MOG in the glycan presence.Communicated by Ramaswamy H. Sarma.

2.
Biomolecules ; 14(4)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38672406

RESUMO

Peroxidative damage to human spermatozoa has been shown to be the primary cause of male infertility. The possible role of nitric oxide (NO) in affecting sperm motility, capacitation, and acrosome reaction has been reported, too. The overproduction of NO by the enzyme inducible nitric oxide synthase (iNOS) could be responsible as it has been implicated in the pathogenesis of many diseases. There have been many studies on regulating iNOS function in various tissues, especially by protein-protein interaction; however, no study has looked for iNOS-interacting proteins in the human testis. Here, we have reported the identification of two proteins that interact with iNOS. We initially undertook a popular yeast two-hybrid assay to screen a human testis cDNA library in yeast using an iNOS-peptide fragment (amino acids 181-335) as bait. We verified our data using the mammalian chemiluminescent co-IP method; first, employing the same peptide and, then, a full-length protein co-expressed in HEK293 cells in addition to the candidate protein. In both cases, these two protein partners of iNOS were revealed: (a) sperm acrosome-associated 7 protein and (b) retinoblastoma tumor-suppressor binding protein.


Assuntos
Óxido Nítrico Sintase Tipo II , Testículo , Técnicas do Sistema de Duplo-Híbrido , Humanos , Masculino , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Testículo/metabolismo , Células HEK293 , Ligação Proteica
3.
J Mol Graph Model ; 124: 108572, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37494873

RESUMO

Multiple Sclerosis (MS) is a demyelinating disease of the central nervous system that disturbs the flow of brain signals to other parts of the body. The actual cause of the disease is still not apparent. The intrinsically disordered proteins (IDP) play a crucial role in neurodegenerative diseases like Alzheimer's, Lewy bodies, Parkinson's, Amyotrophic Lateral Sclerosis, Multiple Sclerosis, etc. In MS, it was known that the immune system attacks the proteins like Myelin Basic Protein (MBP), Myelin-associated Oligodendrocyte Basic protein (MOBP), Myelin-Associated Protein (MAG), and Myelin Proteolipid Protein (PLP) and this leads to demyelination causing MS. Here the proteins MBP and MOBP are both moonlighting intrinsically disordered proteins and exist between the myelin sheath, unlike MAG which is a transmembrane protein. The main focus of the article was to examine the significant role of proteins intrinsically disordered regions (IDR) in maintaining their function. Molecular dynamics simulation studies were performed to study the conformational dynamics of these protein IDRs both in water and near the myelin sheath. The results suggest that the IDR dominates the structural dynamics of these proteins and IDR in both proteins was responsible for their interaction with the myelin sheath. Interestingly, it was noted that the known epitopes MBP83-96 and MOBP65-87 in the IDR have no interaction with the myelin sheath. Thus when the protein remains intrinsically disordered it maintains the proper function and myelin integrity and if it adopts folds the region was identified as an epitope by the immune system leading to demyelination causing MS.


Assuntos
Proteínas Intrinsicamente Desordenadas , Esclerose Múltipla , Humanos , Proteínas da Mielina , Proteínas de Membrana
4.
Complex Intell Systems ; : 1-15, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37361965

RESUMO

A country that relies on developing industrialization and GDP requires a lot of energy. Biomass is emerging as one of the possible renewable energy resources that may be used to generate energy. Through the proper channels, such as chemical, biochemical, and thermochemical processes, it can be turned into electricity. In the context of India, the potential sources of biomass can be broken down into agricultural waste, tanning waste, sewage, vegetable waste, food, meat waste, and liquor waste. Each form of biomass energy so extracted has advantages and downsides, so determining which one is best is crucial to reaping the most benefits. The selection of biomass conversion methods is especially significant since it requires a careful study of multiple factors, which can be aided by fuzzy multi-criteria decision-making (MCDM) models. This paper proposes the normal wiggly interval-valued hesitant fuzzy-based decision-making trial and evaluation laboratory model (DEMATEL) and the Preference Ranking Organization METHod for Enrichment of Evaluations II (PROMETHEE) for assessing the problem of determining a workable biomass production technique. The proposed framework is used to assess the production processes under consideration based on parameters such as fuel cost, technical cost, environmental safety, and CO2 emission levels. Bioethanol has been developed as a viable industrial option due to its low carbon footprint and environmental viability. Furthermore, the superiority of the suggested model is demonstrated by comparing the results to other current methodologies. According to comparative study, the suggested framework might be developed to handle complex scenarios with many variables.

5.
Comput Struct Biotechnol J ; 21: 519-534, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36618989

RESUMO

Deinococcus indicus DR1 is a novel Gram-negative bacterium, isolated from the Dadri wetlands in Uttar Pradesh, India. In addition to being radiation-resistant, the rod-shaped, red-pigmented organism shows extraordinary resistance to arsenic. The proteins of the corresponding ars gene cluster involved in arsenic extrusion in D. indicus DR1 have not yet been characterized. Additionally, how these proteins regulate each other providing arsenic resistance is still unclear. Here, we present a computational model of the operonic structure and the corresponding characterization of the six proteins of the ars gene cluster in D. indicus DR1. Additionally, we show the expression of the genes in the presence of arsenic using qRT-PCR. The ars gene cluster consists of two transcriptional regulators (ArsR1, ArsR2), two arsenate reductases (ArsC2, ArsC3), one metallophosphatase family protein (MPase), and a transmembrane arsenite efflux pump (ArsB). The transcriptional regulators are trans-acting repressors, and the reductases reduce arsenate (As5+) ions to arsenite (As3+) ions for favourable extrusion. The proteins modelled using RoseTTAFold, and their conformationally stable coordinates obtained after MD simulation indicate their various functional roles with respect to arsenic. Excluding ArsB, all the proteins belong to the α + ß class of proteins. ArsB, being a membrane protein, is fully α-helical, with 12 transmembrane helices. The results show the degree of similarity or divergence of the mechanism utilized by these proteins of ars gene cluster in D. indicus DR1 to confer high levels of arsenic tolerance. This structural characterization study of the ars genes will enable new and deeper insights of arsenic tolerance.

6.
J Biomol Struct Dyn ; 40(15): 7027-7037, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33663341

RESUMO

Myelin oligodendrocyte glycoprotein is a transmembrane protein found on the outer lamella of the myelin sheath. The autoimmune attack on the MOG leads to demyelination which differs from normal multiple sclerosis. MOG has three epitope regions MOG1-22, MOG35-55, and MOG92-106 in the extracellular region, and the crucial MOG35-55 epitope and Human Leukocyte Antigen (HLA) interaction is the initial step for autoantibody generation. To study the effective role of glycosylation in MOG-HLA interaction, we performed molecular dynamics simulations of the complex where HLA interacts with three MOG epitopes both in the absence and presence of glycan. The results projected that the epitope MOG1-22 is decisive for the HLA interaction in the absence of glycan and HLA interacts with the epitope MOG35-55 irrespective of glycan existence. The residues Arg9, Arg46, and Arg66 were found to interact strongly with HLA even in the presence of glycan. The glycan increased the flexibility of hMOG and enhanced the interaction of MOG with water molecules.


Assuntos
Esclerose Múltipla , Glicoproteína Associada a Mielina , Epitopos , Glicosilação , Antígenos HLA , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Glicoproteína Associada a Mielina/química , Glicoproteína Associada a Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito
7.
Front Neurosci ; 15: 712578, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566563

RESUMO

Intracortical microelectrodes are neuroprosthetic devices used in brain-machine interfaces to both record and stimulate neural activity in the brain. These technologies have been improved by advances in microfabrication, which have led to the creation of subcellular and high-density microelectrodes. The greater number of independent stimulation channels in these devices allows for improved neuromodulation selectivity, compared to single-site microelectrodes. Elements of electrode design such as electrode-site placement can influence the long-term performance of neuroprostheses. Previous studies have shown that electrode-sites placed on the edge of a planar microelectrode have greater chronic recording functionality than sites placed in the center. However, the effect of electrode-site placement on long-term intracortical microstimulation (ICMS) is still unknown. Here, we show that, in rats chronically implanted with custom-made planar silicon microelectrodes, electrode-sites on the tip of the device outperformed those on both the edge and center in terms of the effect per charge delivered, though there is still a slight advantage to using edge sites over center sites for ICMS. Longitudinal analysis of ICMS detection thresholds over a 16-week period revealed that while all sites followed a similar trend over time, the tip and edge sites consistently elicited the behavioral response with less charge compared to center sites. Furthermore, we quantified channel activity over time and found that edge sites remained more active than center sites over time, though the rate of decay of active sites for center and edge sites was comparable. Our results demonstrate that electrode-site placement plays an important role in the long-term stability of intracortical microstimulation and could be a potential factor to consider in the design of future intracortical electrodes.

8.
J Assist Reprod Genet ; 37(10): 2615-2630, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32821972

RESUMO

PURPOSE: The objective of the present study was to purify sheep spermatogonial stem cells (SSCs) from testicular isolate using combined enrichment methods and to study the effect of growth factors on SSC stemness during culture. METHODS: The testicular cells from prepubertal male sheep were isolated, and SSCs were purified using Ficoll gradients (10 and 12%) followed by differential plating (laminin with BSA). SSCs were cultured with StemPro®-34 SFM, additives, and FBS for 7 days. The various doses (ng/ml) of growth factors, EGF at 10, 15, and 20, GDNF at 40, 70, and 100 and IGF-1 at 50, 100, and 150 were tested for the proliferation and stemness of SSCs in vitro. The stemness in cultured cells was assessed using SSC markers PLZF, ITGA6, and GFRα1. RESULTS: Ficoll density gradient separation significantly (p < 0.05) increased the percentage of SSCs in 12% fraction (35.1 ± 3.8 vs 11.2 ± 3.7). Subsequently, purification using laminin with BSA plating further enriched SSCs to 61.7 ± 4.7%. GDNF at 40 ng/ml, EGF at 15 and 20 ng/ml and IGF1 at 100 and 150 ng/ml significantly (p < 0.05) improved proliferation and stemness of SSCs up to 7 days in culture. GDNF at 40 ng/ml outperformed other growth factors tested and could maintain the ovine SSCs proliferation and stemness for 36 days. CONCLUSIONS: The combined enrichment method employing density gradient centrifugation and laminin with BSA plating improves the purification efficiency of ovine SSCs. GDNF at 40 ng/ml is essential for optimal proliferation and sustenance of stemness of ovine SSCs in vitro.


Assuntos
Fator de Crescimento Epidérmico/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator de Crescimento Insulin-Like I/genética , Espermatogônias/citologia , Animais , Linhagem Celular , Proliferação de Células/genética , Separação Celular/métodos , Masculino , Ovinos/genética , Ovinos/crescimento & desenvolvimento , Espermatogônias/crescimento & desenvolvimento , Células-Tronco/citologia , Testículo/citologia , Testículo/crescimento & desenvolvimento
9.
J Biomol Struct Dyn ; 38(6): 1649-1658, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31057084

RESUMO

Myelin Oligodendrocyte Glycoprotein (MOG) is found on the external surface of the myelin sheath and plays an important role in neurodegenerative diseases. It was observed that the protein MOG acts as an autoantigen and results in demyelination. The cause for the sudden change of protein to be autoantigen is still unclear. Here we present the molecular dynamics simulation studies of MOG in both unbound and bound states with an antibody. Both these systems were studied in the absence and presence of N-glycan in order to understand the effect of glycosylation in the MOG conformational changes. The results indicate that the glycosylation decreases the flexibility of protein in both free and bound states. Glycan influence the interaction of the complex with the water molecules whereas free protein MOG interaction with water molecules was not affected by the glycosylation. Glycan changes the 310 helices adjacent to the antibody interacting epitope MOG35-55 to turns.Communicated by Ramaswamy H. Sarma.


Assuntos
Anticorpos/química , Glicoproteína Mielina-Oligodendrócito/química , Polissacarídeos/química , Epitopos
10.
J Mol Graph Model ; 96: 107517, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31881468

RESUMO

Myelin Oligodendrocyte glycoprotein (MOG) is found to play an important role in providing structural integrity to myelin sheath at the same time it acts as an auto-antigen which might lead to Multiple Sclerosis (MS). What causes this specific property of being an auto-antigen is still not known. Here we present molecular dynamics simulation studies of unfolding and folding of the protein MOG in both the absence and presence of N-glycan in order to understand the role of glycosylation in the stability and flexibility of the protein. The main results from these studies show that the glycosylation increases the stability of the protein MOG and inhibits the complete unfolding of MOG in the SMD. From the folding studies using TMD, it was observed that the glycan helps the protein to attain the near-native folded conformation. However, it was also observed from the direct TMD studies that the pathway of protein folding was enhanced by the trace-back of intermediate states in the presence of glycan.


Assuntos
Esclerose Múltipla , Glicoproteína Associada a Mielina , Humanos , Glicoproteína Associada a Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito , Polissacarídeos , Dobramento de Proteína
11.
Cogn Neurodyn ; 13(4): 367-377, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31354882

RESUMO

In this paper, the problem of robust consensus for multi-agent systems affected by external disturbances is discussed. A novel consensus control is developed by using a feedback controller based on disturbance rejection and Smith predictor scheme. Specifically, the disturbance rejection performance of the uncertain multi-agent systems is improved according to the estimation of equivalent-input-disturbance and the effect of time delay in the control system is reduced via Smith predictor scheme by shifting the delay outside the feedback loop. Furthermore, by combining Lyapunov theory, matrix inequality techniques and properties of Kronecker product, a robust feedback controller for each agent is designed such that the desired consensus of the uncertain multi-agent systems affected by external disturbances can be ensured. Finally, to illustrate the validity of the designed control scheme, two numerical examples with simulation results are provided.

12.
ISA Trans ; 91: 90-98, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30765130

RESUMO

This paper employs linear matrix inequality-based optimization algorithm to establish finite-time boundedness and dissipativeness for a class of large-scale systems in the presence of actuator faults and actuator saturation. In addition, for the proposed system, a novel time-varying actuator fault model is incorporated in controller design, which is more general than the conventional actuator fault models. Specifically, by constructing a suitable Lyapunov-Krasovskii functional, a new set of sufficient conditions is derived, which ensures the finite-time boundedness with dissipativity of the considered large-scale systems. The main intention of this paper is to design a novel decentralized fault-tolerant controller to compensate simultaneously the actuator faults, actuator saturations and nonlinear interconnections. Finally, an example and its simulation study are presented to verify the effectiveness and potential of the proposed control design technique.

13.
Nat Chem Biol ; 14(3): 256-261, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29309053

RESUMO

Indigo is an ancient dye uniquely capable of producing the signature tones in blue denim; however, the dyeing process requires chemical steps that are environmentally damaging. We describe a sustainable dyeing strategy that not only circumvents the use of toxic reagents for indigo chemical synthesis but also removes the need for a reducing agent for dye solubilization. This strategy utilizes a glucose moiety as a biochemical protecting group to stabilize the reactive indigo precursor indoxyl to form indican, preventing spontaneous oxidation to crystalline indigo during microbial fermentation. Application of a ß-glucosidase removes the protecting group from indican, resulting in indigo crystal formation in the cotton fibers. We identified the gene coding for the glucosyltransferase PtUGT1 from the indigo plant Polygonum tinctorium and solved the structure of PtUGT1. Heterologous expression of PtUGT1 in Escherichia coli supported high indican conversion, and biosynthesized indican was used to dye cotton swatches and a garment.


Assuntos
Cor , Glucosídeos/química , Glucosiltransferases/química , Índigo Carmim/química , Polygonum/enzimologia , beta-Glucosidase/química , Reatores Biológicos , Domínio Catalítico , Cristalografia por Raios X , DNA Complementar/metabolismo , Dimerização , Escherichia coli , Fermentação , Perfilação da Expressão Gênica , Biblioteca Gênica , Indóis/química , Folhas de Planta/enzimologia , Proteínas de Plantas/química , Polygonum/genética , Proteínas Recombinantes/química , Têxteis , Transcriptoma
14.
J Surg Case Rep ; 2016(9)2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27651109

RESUMO

Cavernous angiomas represent 5-12% of all spinal vascular lesions and 1% of all intramedullary lesions in pediatric patients. Intramedullary spinal cavernomas are relatively rare with only 24 cases reported till date to the best of our knowledge. A 15 -year-old boy presented to the clinic with acute onset motor weakness in all four limbs. He was diagnosed with multiple cerebral cavernomas and an acutely bleeding spinal cavernoma. Complete surgical excision of the spinal cavernoma was done. Postoperatively the patient's weakness gradually improved to a power of 4/5 in all his limbs over a period of 10 days. Only 24 cases of pediatric spinal cavernomas have been reported in the current literature. Current consensus on management of these rare lesions is based on previously published case reports/series and surgery appears to be the only definitive treatment. Further studies regarding any non-surgical expectant management appears warranted.

15.
Mol Inform ; 35(6-7): 268-77, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27492241

RESUMO

Antifreeze proteins (AFP) observed in cold-adapting organisms bind to ice crystals and prevent further ice growth. However, the molecular mechanism of AFP-ice binding and AFP-inhibited ice growth remains unclear. Here we report the interaction of the insect antifreeze protein (Tenebrio molitor, TmAFP) with ice crystal by molecular dynamics simulation studies. Two sets of simulations were carried out at 263 K by placing the protein near the primary prism plane (PP) and basal plane (BL) of the ice crystal. To delineate the effect of temperatures, both the PP and BL simulations were carried out at 253 K as well. The analyses revealed that the protein interacts strongly with the ice crystal in BL simulation than in PP simulation both at 263 K and 253 K. Further, it was observed that the interactions are primarily mediated through the interface waters. We also observed that as the temperature decreases, the interaction between the protein and the ice increases which can be attributed to the decreased flexibility and the increased structuring of the protein at low temperature. In essence, our study has shed light on the interaction mechanism between the TmAFP antifreeze protein and the ice crystal.


Assuntos
Proteínas Anticongelantes/química , Proteínas de Insetos/química , Animais , Congelamento , Ligação de Hidrogênio , Gelo , Simulação de Dinâmica Molecular , Conformação Proteica , Tenebrio/química
16.
J Food Sci Technol ; 52(9): 5484-96, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26344963

RESUMO

Pectin is a complex structural heteropolysaccharide that require numerous pectinolytic enzymes for its complete degradation. Polygalacturonase from mesophilic or thermophilic origin are being widely used in fruit and vegetable processing in the recent decades to degrade pectic substances. Recently cold active pectinases are finding added advantages over meso and thermophilic counterparts, to use in industrial scale particularly in food processing industry. They facilitate in conservation of several properties of foods so that the end product retains its naturality and also generates economic benefits. In the present study, Pseudoalteromonas haloplanktis, a well reported marine psychrophile is taken as a model organism for cold active polygalacturonase and is evaluated in comparision to the routinely used mesophilic and thermophilic enzymes by insicio approach. Polygalacturonase sequences from industrially important microbial sources were subjected to MEME and Pfam wherein motifs and domains involved in the conservation were analyzed. Dendrogram revealed sequence level similarity and motifs showed uniform distribution of conserved regions that are involved in important functions. It was also observed through clustalW analysis that the amount of arginine content of psychrophiles is less when compared with thermophiles. Finally, all the modeled enzyme structures were subjected to docking studies using Autodock 4.2 with the substrate polygalacturonic acid and binding energies were found to be -5.73, -6.22 and -7.27 KCals/mole for meso, thermo and psychrophiles respectively which indicates the efficiency of psychrophilic enzymes when compared with its counterparts giving scope for further experimentation to find their better usage in various food industry applications.

17.
Proteins ; 83(9): 1654-64, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26138156

RESUMO

Significant progress has been made in the determination of the protein structures with their number today passing over a hundred thousand structures. The next challenge is the understanding and prediction of protein-protein and protein-ligand interactions. In this work we address this problem by analyzing curved solenoid proteins. Many of these proteins are considered as "hub molecules" for their high potential to interact with many different molecules and to be a scaffold for multisubunit protein machineries. Our analysis of these structures through molecular dynamics simulations reveals that the mobility of the side-chains on the concave surfaces of the solenoids is lower than on the convex ones. This result provides an explanation to the observed preferential binding of the ligands, including small and flexible ligands, to the concave surface of the curved solenoid proteins. The relationship between the landscapes and dynamic properties of the protein surfaces can be further generalized to the other types of protein structures and eventually used in the computer algorithms, allowing prediction of protein-ligand interactions by analysis of protein surfaces.


Assuntos
Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas/química , Animais , Sítios de Ligação , Cristalografia por Raios X , Humanos , Ligantes , Ligação Proteica , Proteínas/metabolismo , Propriedades de Superfície
18.
Pathol Oncol Res ; 21(4): 909-20, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25740072

RESUMO

Protein therapeutics, particularly of heterologous origin are shown to elicit immunogenic responses which result in adverse allergic reactions in spite of their promising clinical benefit. L-Asparaginase is one such well known chemotherapeutic agent that has enhanced the survival rates to 90 % in the treatment of acute lymphoblastic leukaemia for past 30 years. But the use of this enzyme is accompanied by hypersensitive reactions ranging from allergy to anaphylactic shock which have a drastic influence in treatment outcomes. Numerous attempts have been made to minimize the problems of immunogenicity, which remained as a major bottleneck in the treatment protocols. Conjugating the enzyme L- Asparaginase with PEG was successful as it has reduced the complications in therapy and frequency of injections (dosages), and thus became prominent in reducing the immunogenicity up to a certain extent. Keeping the bottlenecks in consideration during the development of therapeutics, the present study concentrates on engineering of protein as an alternative to the PEGylated enzyme, having reduced immunogenicity as an inbuilt character of protein by using in silico approaches. L-Asparaginase from Escherichia coli and Pectobacterium carotovorum were selected for the present study. The methodology consists of (i) locating the B and CD4+ T cell epitopes of enzyme by in silico tools (ii) generating point mutations of these epitopes to alter or reduce the immunogenicity of protein (iii) generating enzyme models by molecular modelling (iv) assessing the binding affinity of the substrate with L-Asparaginase variants by in silico docking methods using Autodock 4.2 and (v) validating the mutated model for stability by molecular dynamics simulation studies using Gromacs.


Assuntos
Aminoácidos/deficiência , Asparaginase/metabolismo , Terapia Enzimática , Epitopos/imunologia , Simulação de Dinâmica Molecular , Pectobacterium carotovorum/enzimologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Sequência de Aminoácidos , Aminoácidos/imunologia , Asparaginase/genética , Asparaginase/imunologia , Linfócitos T CD4-Positivos/imunologia , Simulação por Computador , Hipersensibilidade a Drogas/imunologia , Epitopos/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Homologia de Sequência de Aminoácidos
19.
Hum Mol Genet ; 23(24): 6458-69, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25027324

RESUMO

It is expected that serum protein biomarkers in Duchenne muscular dystrophy (DMD) will reflect disease pathogenesis, progression and aid future therapy developments. Here, we describe use of quantitative in vivo stable isotope labeling in mammals to accurately compare serum proteomes of wild-type and dystrophin-deficient mdx mice. Biomarkers identified in serum from two independent dystrophin-deficient mouse models (mdx-Δ52 and mdx-23) were concordant with those identified in sera samples of DMD patients. Of the 355 mouse sera proteins, 23 were significantly elevated and 4 significantly lower in mdx relative to wild-type mice (P-value < 0.001). Elevated proteins were mostly of muscle origin: including myofibrillar proteins (titin, myosin light chain 1/3, myomesin 3 and filamin-C), glycolytic enzymes (aldolase, phosphoglycerate mutase 2, beta enolase and glycogen phosphorylase), transport proteins (fatty acid-binding protein, myoglobin and somatic cytochrome-C) and others (creatine kinase M, malate dehydrogenase cytosolic, fibrinogen and parvalbumin). Decreased proteins, mostly of extracellular origin, included adiponectin, lumican, plasminogen and leukemia inhibitory factor receptor. Analysis of sera from 1 week to 7 months old mdx mice revealed age-dependent changes in the level of these biomarkers with most biomarkers acutely elevated at 3 weeks of age. Serum analysis of DMD patients, with ages ranging from 4 to 15 years old, confirmed elevation of 20 of the murine biomarkers in DMD, with similar age-related changes. This study provides a panel of biomarkers that reflect muscle activity and pathogenesis and should prove valuable tool to complement natural history studies and to monitor treatment efficacy in future clinical trials.


Assuntos
Envelhecimento/sangue , Proteínas Sanguíneas/metabolismo , Distrofina/deficiência , Distrofia Muscular Animal/sangue , Distrofia Muscular de Duchenne/sangue , Adolescente , Envelhecimento/genética , Envelhecimento/patologia , Animais , Biomarcadores/sangue , Proteínas Sanguíneas/genética , Criança , Pré-Escolar , Análise por Conglomerados , Distrofina/genética , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Anotação de Sequência Molecular , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Especificidade da Espécie
20.
Appl Biochem Biotechnol ; 172(5): 2324-37, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24390855

RESUMO

Pectinase has been an integral part of commercial food processing, where it is used for degradation of pectin and facilitates different processing steps such as liquefaction, clarification and juice extraction. The industry currently uses pectinases from mesophilic or thermophilic microorganisms which are well established, but recently, there has been is a new trend in the food industry to adopt low-temperature processing. This trend is due to the potential economic and environmental advantages which the industry envisages. In order to achieve this change, an alternative for the existing pectinases, which are mostly mesophilic and temperature-dependent, must be identified, which can function efficiently at low temperatures. Psychrophilic pectinases derived from cold-adapted microorganisms, are known to function at low to freezing temperatures and may be an alternative to address the problem. Psychrophilic pectinases can be obtained from the vast microflora inhabiting various cold regions on earth such as oceans, Polar Regions, snow-covered mountains, and glaciers. This article is intended to study the advantages of cold active pectinases, its sources, and the current state of the research.


Assuntos
Manipulação de Alimentos/métodos , Pectinas/química , Poligalacturonase/química , Aspergillus niger/química , Aspergillus niger/enzimologia , Bacillus subtilis/química , Bacillus subtilis/enzimologia , Sequência de Carboidratos , Clima Frio , Temperatura Baixa , Erwinia/química , Erwinia/enzimologia , Humanos , Camada de Gelo/microbiologia , Isoenzimas/química , Isoenzimas/classificação , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Poligalacturonase/classificação , Poligalacturonase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...