Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 231: 123323, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36669631

RESUMO

Ulcerative colitis (UC) is a chronic recurrent disease affecting the gastrointestinal tract especially colorectum. Keratinocyte growth factor (KGF) plays the vital roles in maintaining the colonic mucosal barrier. The poor stability and off-target of KGF were two hindering factors for its clinical application. Herein, in situ hydrogel (PE) with mucoadhesive ability was constructed by using temperature-sensitive poloxamer and EGCG as hydrogel-forming material and adhesive enhancer, respectively. Incorporation of EGCG led to the slight decrease of the gelled temperature and shortened the gelled time of PE hydrogel. When the concentration of EGCG is 0.1 %, PE hydrogel exhibits the suitable viscosity of 280 ± 20 Pa·s and the strong adhesive force of 725 ± 25 mN. KGF was soluble in cold PE solution to obtain KGF-loaded PE hydrogel (KGF@PE). PE hydrogel could improve the stability of KGF in vitro. KGF@PE not only could recover greatly the body weight of TNBS-induced rats but also repair their colonic morphology and goblet cell function. Moreover, the potential of repairing the epithelial barrier was indicated by upregulating tight junction proteins. Importantly, the safety of KGF@PE hydrogel for colitis was also confirmed on AOM/DSS-induced mice models. Conclusively, KGF@PE may be a promising therapeutic platform without obvious side effect for ulcerative colitis.


Assuntos
Colite Ulcerativa , Colite , Ratos , Camundongos , Animais , Colite Ulcerativa/tratamento farmacológico , Hidrogéis/farmacologia , Fator 7 de Crescimento de Fibroblastos/farmacologia , Adesivos/farmacologia , Colo/metabolismo , Modelos Animais de Doenças , Sulfato de Dextrana/efeitos adversos , Mucosa Intestinal/metabolismo , Colite/metabolismo
2.
Biomater Adv ; 144: 213202, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36434928

RESUMO

Current bioceramic scaffolds for critical-size bone defects are still facing various challenges such as the poor capability of self-resorption, vascularization and osteogenesis. Herein, a composite scaffold (HOD) is fabricated by integrating bioactive coatings of konjac glucomannan (KGM) and deferoxamine (DFO) into porous hydroxyapatite scaffold (HA), where KGM coating induces the self-resorption of HOD after implanting and DFO promoted the vascularization at the defected bone. Porous HA scaffolds with 200-400 µm of pore sizes were prepared and these bioactive coatings were successfully deposited on the scaffold, which was confirmed by SEM. MC3T3-E1 cells could be tightly attached to the pore wall of HOD and the obvious osteogenic differentiation was clearly displayed after 14 days of co-culture. Besides, HOD displayed the potential of promoting the vascularization of HUVECs. Importantly, the accelerated degradation of HOD was observed in a macrophage-associated acidic medium, which led to the self-resorption of HOD in vivo. Micro-CT images showed that HOD was gradually replaced by newly formed bone, achieving a balance between the new bone formation and the scaffold degradation. The rapid bone repairing of the femoral defects in rats was displayed for HOD in comparison to the HA scaffold. Moreover, the therapeutic mechanism of HOD was highly associated with promoted osteogenesis and vascularization. Collectively, the porous ceramic scaffold orchestrated with bioactive coatings may be a promising strategy for repairing of the large bone defect.


Assuntos
Durapatita , Osteogênese , Ratos , Animais , Alicerces Teciduais , Engenharia Tecidual/métodos , Porosidade
3.
Acta Biomater ; 143: 233-252, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35245681

RESUMO

Ulcerative colitis (UC) usually occurs in the superficial mucosa of the colorectum. Here, a double-network hydrogel (PMSP) was constructed from maleimided γ-polyglutamic acid and thiolated γ-polyglutamic acid through crosslinking of thiol-maleimide and self-oxidized thiols. PMSP with a negative charge specifically adhered to the inflamed mucosa with positively charged proteins rather than to the healthy mucosa. PMSP exhibited good mechanical strength with storage modulus (G') of 17.6 Pa and a linear viscoelastic region (LVR) of 107.2% strain. Moreover, PMSP showed a stronger bio-adhesive force toward the inflamed tissue-mimicking substrate than toward its healthy counterpart. In vivo imaging confirmed that PMSP specifically adhered to the inflamed colonic mucosa of rats with TNBS-induced UC. KPV (Lys-Pro-Val) as a model drug was easily captured by PMSP through electrostatic interactions, thus retaining its bioactivity for a longer time under high temperature conditions. Moreover, the alleviating effect of KPV on rats with TNBS-induced colitis was significantly improved by PMSP after intracolonic administration. The epithelial barrier of the colon also effectively recovered following PMSP-KPV treatment. PMSP-KPV also modulated the gut flora, markedly augmenting the abundance of beneficial microorganisms in gut homeostasis. The mechanism by which PMSP-KPV induces a therapeutic effect may be associated with the inhibition of oxidative stress. Conclusively, the PMSP hydrogel seems to be a promising rectal delivery system for the therapy of UC. STATEMENT OF SIGNIFICANCE: Ulcerative colitis (UC) is a chronic and relapsing disease of the gastrointestinal tract. A key therapeutic approach to treat UC is to repair the mucosal barriers. Here, a double-network hydrogel (PMSP) was constructed from maleimided and thiolated γ-polyglutamic acid through crosslinking of thiol-maleimide and self-oxidized thiols. The negatively charged PMSP specifically adhered to the inflamed colon rather than its healthy counterpart and was retained for a longer time. KPV as a model drug was easily captured by PMSP, which provided better stability to KPV when exposed to high temperature of 50 °C. The epithelial mucosal barrier of the colon was effectively recovered by the rectal administration of PMSP-KPV to rats with TNBS-induced UC. Moreover, PMSP-KPV modulated the gut flora of colitic rats, markedly augmenting the abundance of beneficial microorganisms. Conclusively, PMSP seems to be a promising rectal delivery system for UC therapy.


Assuntos
Colite Ulcerativa , Hidrogéis , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colo , Hidrogéis/química , Mucosa Intestinal/metabolismo , Ácido Poliglutâmico/farmacologia , Ratos , Compostos de Sulfidrila/farmacologia
4.
Biomater Sci ; 10(1): 227-242, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34846053

RESUMO

The self-healing of chemotherapy-induced oral mucositis is difficult in practice because of both local bacterial infection and severe inflammation. Herein, in situ mucoadhesive hydrogels (PPP_E) were successfully prepared by using temperature-sensitive PLGA-PEG-PLGA (PPP) as a matrix and epigallocatechin-3-gallate (EGCG) with inherent antibacterial activity as an adhesion enhancer. A series of PPP_E precursor solutions with various EGCG concentrations (1%, 2% and 5%) were prepared by fixing the PPP concentration at 25%. EGCG slightly decreased the sol-gel transition temperature and shortened the sol-gel transition time of the PPP hydrogel. Moreover, the incorporation of EGCG could significantly increase the tissue adhesion properties of the PPP hydrogel at 37 °C. PPP_2%E displayed a suitable gelation temperature (36.2 °C), gelation time (100 s) and storage modulus (48 Pa). Tripeptide KPV as a model drug was easily dissolved in cold PPP_2%E precursor solution to prepare KPV@PPP_2%E hydrogel. The anti-inflammatory activity and promotion of cell migration potential by KPV in PPP-2% E hydrogel were well maintained. Moreover, KPV@PPP_2%E exhibited strong antibacterial efficacy against S. aureus. PPP_2%E precursor solution rapidly transformed to a hydrogel and adhered to the wound surface for 7 hours when administrated to the gingival mucosa of rats. Treatment with KPV@PPP_2%E hydrogel greatly improved the food intake and body weight recovery of rats with chemotherapy-induced oral mucositis. Moreover, the tissue morphology of the ulcerated gingiva after application of KPV@PPP_E hydrogel was also well repaired by promoting CK10 and PCNA expression. In addition, the inflammatory cytokines including IL-1ß and TNF-α were significantly inhibited by KPV@PPP_2%E hydrogel while IL-10 was up-regulated. KPV@PPP_2%E hydrogel also had an anti-bacterial effect on MRSA-infected gingival ulcer wounds, which resulted in the obvious inhibition of infiltration by inflammatory cells into submucosal tissues. Conclusively, KPV@PPP_E may be a promising practical application for cancer patients with chemotherapy-induced oral mucositis.


Assuntos
Antineoplásicos , Estomatite , Animais , Antibacterianos , Anti-Inflamatórios/farmacologia , Humanos , Hidrogéis , Ratos , Staphylococcus aureus , Estomatite/induzido quimicamente , Estomatite/tratamento farmacológico
5.
ACS Biomater Sci Eng ; 7(10): 4859-4869, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34547895

RESUMO

KPV (Lys-Pro-Val), which is a tripeptide derived from α-MSH (α-melanocyte-stimulating hormone), has an anti-inflammatory effect on colitis. However, KPV solution is very unstable when rectally administered, compromising its therapeutic efficacy. Herein, cysteamine-grafted γ-polyglutamic acid (SH-PGA) was synthesized by conjugating cysteamine with the carboxyl groups of γ-PGA. The synthesized SH-PGA has the thiol grafting amount of 4.5 ± 0.3 mmol/g. Without the use of the cross-linker, the SH-PGA hydrogel with 4% of the polymer was formed by self-cross-linking of thiol groups. Moreover, the formation of the SH-PGA hydrogel was not affected by KPV. The KPV/SH-PGA hydrogel presented higher elastic modulus (G') than the corresponding viscous modulus (G″) at 0.01-10 Hz, exhibiting good mechanical stability. The KPV/SH-PGA hydrogel presented a shear-thinning behavior, which was helpful for rectal administration. Only 30% of KPV was released from the KPV/SH-PGA hydrogel within 20 min, followed by a sustained-release behavior. Importantly, the stability of KPV in the SH-PGA hydrogel was obviously enhanced, which was presented by detecting its anti-inflammatory activity and promoting cell migration potential after 2 h of exposure to 37 °C. The enhanced therapeutic effect of the KPV/SH-PGA hydrogel on colitis was confirmed on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced ulcerative colitis rats. The colitis symptoms including body weight loss and the disease activity index score were obviously attenuated by rectally administering the KPV/SH-PGA hydrogel. Besides, the KPV/SH-PGA hydrogel treatment prevented the colon shortening of TNBS-infused rats and decreased the colonic myeloperoxidase level. The morphology of the colon including the epithelial barrier, crypt, and intact goblet cells was recovered after KPV/SH-PGA hydrogel treatment. Besides, the KPV/SH-PGA hydrogel decreased the expression of proinflammatory cytokines such as tumor necrosis factor α and interleukin 6. Collectively, the KPV/SH-PGA hydrogel may provide a promising strategy for the treatment of ulcerative colitis.


Assuntos
Colite Ulcerativa , Animais , Colite Ulcerativa/induzido quimicamente , Cisteamina , Hidrogéis , Ácido Poliglutâmico/análogos & derivados , Ratos , Ácido Trinitrobenzenossulfônico/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...