Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bot Stud ; 65(1): 15, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967711

RESUMO

Quinoa (Chenopodium quinoa, 2n = 4x = 36), a super pseudocereal crop, has been introduced into China nearly 60 years. Many excellent varieties have been developed through massive selection; however, few are developed through mutagenesis breeding. In this study, the 'Longli-4' variety, locally cultivated in Gansu province, Northwest China, was selected for experimentation. The grains of 'Longli-4' were treated with ethyl methanesulfonate (EMS) at a concentration of 0.8% for 8 h. Nine plants from independent M2 families were randomly selected to investigate the mutagenesis effect of EMS on the quinoa genome. The results indicated that the single nucleotide polymorphisms (SNPs) induced by EMS were unevenly distributed across all 18 chromosomes, with an average mutation frequency of 91.2 SNPs/Mb, ranging from 4.5 to 203.5 SNPs/Mb. A significant positive correlation between the number of SNPs and chromosome length was identified through linear model analysis. Transitions from G/C to A/T were the most predominated in all variant categories, accounting for 34.4-67.2% of the mutations, and SNPs were significantly enriched in intergenic regions, representing 69.2-75.1% of the total mutations. This study provides empirical support for the application of low concentration EMS treatment in quinoa breeding.

2.
Crit Rev Food Sci Nutr ; 63(19): 4188-4209, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34755571

RESUMO

Sand rice (Agriophyllum squarrosum) is prized for its well-balanced nutritional properties, broad adaptability in Central Asia and highly therapeutic potentials. It has been considered as a potential climate-resilient crop. Its seed has comparable metabolite profile with Chenopodium quinoa and is rich in proteins, essential amino acids, minerals, polyunsaturated fatty acids, and phenolics, but low in carbohydrates. Phenolics like protocatechuic acid and quercetins have been characterized with biological functions on regulation of lipid and glucose metabolism in addition to anti-inflammatory and antioxidant activities. Sand rice is thus an important source for developing functional and nutraceutical products. Though historical consumption has been over 1300 years, sand rice has undergone few agronomic improvements until recently. Breeding by individual selection has been performed and yield of the best genotype can reach up to 1295.5 kg/ha. Furthermore, chemical mutagenesis has been used to modify the undesirable traits and a case study of a dwarf line (dwarf1), which showed the Green Revolution-like phenotypes, is presented. Utilization of both breeding methodologies will accelerate its domestication process. As a novel crop, sand rice research is rather limited compared with quinoa. More scientific input is urgently required if the nutritional and commercial potentials are to be fully realized.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2021.1999202 .


Assuntos
Chenopodium quinoa , Chenopodium quinoa/química , Domesticação , Sementes/química , Agricultura
3.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36430511

RESUMO

Quinoa (Chenopodium quinoa) is a well-known climate-resilient crop and has been introduced into multiple marginal lands across the world, including China, to improve food security and/or balanced nutrient supplies. Conventional breeding has been widely applied in the selection and breeding of quinoa varieties in China since 1980s; however, few studies have been implemented on the genetic variances among different varieties developed by diversity breeding objectives. In this study, the phenotypic and genetic differences between two varieties (Longli-4 and CA3-1) from China were systematically analyzed. A total of 407,651 and 2,731,411 single nucleotide polymorphisms (SNPs) and 212,724 and 587,935 small insertion and deletion (INDELs) were detected for Longli-4 and CA3-1, respectively, when compared with the reference genome of PI614886. The SNPs/INDELs were unevenly distributed across each chromosome for both varieties. There were 143,996 SNPs and 83,410 INDELs shared between Longli-4 and CA3-1, accounting for 4% of the total variances. The variation was then screened based on the SNP effects. There were 818 and 73 genes with the variety-specific non-synonymous and stop-gain variation in Longli-4, whereas there were 13,701 and 733 genes in CA3-1. Specifically, 3501 genes with the non-synonymous variation and 74 genes with the stop-gain variation were found in both Longli-4 and CA3-1. These results suggest that convergent selection occurred during the different breeding processes. A set of candidate genes related to agronomic traits and domestication were further selected to detect the genetic divergence in detail in the two varieties. Only one domestication gene was identified having Longli-4-specific stop-gain variation. Twelve candidate genes related to betalain (1), flowering (4), seed size (2), domestication (1), and saponin (4) were identified having CA3-1-specific stop-gain variation. Interestingly, one seed size gene homologous of CKX1 (cytokinin oxidase/dehydrogenase 1) had the stop-gain variation in both varieties. This research will therefore provide guidance for the molecular-assisted breeding in quinoa.


Assuntos
Chenopodium quinoa , Chenopodium quinoa/genética , Genoma de Planta , Melhoramento Vegetal , Genômica , Domesticação
4.
J Exp Bot ; 73(16): 5682-5697, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35603725

RESUMO

Sand rice (Agriophyllum squarrosum) is widely distributed on dunes in the Asian interior arid zone, and its large intraspecific trait variation makes it a very good model for investigating the ecological processes underlying its adaptation to the desert environment. In this study, seed size variation across 68 natural populations was used to establish geographic patterns and to quantify the effects of the climate, soil, and collection-year weather variables. The length of the seed major axis and thousand seed weight (TSW) both showed significant longitudinal patterns. Long-term climate variables accounted for most of the explained variances for seed major axis (57.20%) and TSW (91.54%). Specifically, annual precipitation and minimum monthly precipitation had the most significantly positive and negative effects, indicating that longitudinal clines are driven by a precipitation gradient across the species' distribution range. A substantial unique effect of soil variables (27.27%) was found for seed major axis variation, but only 3.64% of TSW variation was explained by soil variables. Two extreme groups were selected to evaluate the genetic and plastic effects on seed size in a common garden experiment. Large-seeded individuals were more competitive in semi-arid regions, and had stronger adaptive plasticity as well as better performance in early seedling establishment, and hence they have potential for use in future domestication projects.


Assuntos
Chenopodiaceae , Clima Desértico , Plântula , Sementes , Solo
5.
Zhongguo Zhong Yao Za Zhi ; 43(15): 3115-3126, 2018 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-30200706

RESUMO

In this study we investigate the effects of cadmium stress on Astragalus membranaceus seedlings and the alleviative effects of attapulgite clay in growth substrate on cadmium stress to A. membranaceus seedlings. The results showed that the Y (Ⅱ) (effective photochemical quantum yield of PSⅡ photosynthetic), qP(photochemical quenching coefficient), ETR(the rate of non-cyclic electrontransport through PSⅡ), and chlorophyll content of the leaves were significantly decreased with the increase of cadmium concentrations, while the cadmium content, non-photochemical quenching(NPQ, qN) of the leaves and cadmium content, MDA content, plasma membrane permeability, and the damage degree of root apical membrane of the roots were significantly increased. Simultaneously, the activities of APX(ascorbate peroxidase), SOD(superoxide dismutase), POD(peroxidase), CAT(catalase), soluble protein content, and soluble sugar content of roots were increased first but then decreased with the increasing cadmium concentration. Under the condition of without Cd stress, the attapulgite clay into the growth substrate did not significantly affect above physiological indexes of leaves, but significantly increased SOD activity and soluble sugar content of roots and decreased the MDA content, damage degree of root apical membrane of roots, while other physiological indexes did not significantly change. Under cadmium stress, the presence of attapulgite clay in the growth substrate significantly alleviated the cadmium-induced decreases Y (Ⅱ), qP, ETR and chlorophyll content of leaves, and the CAT activity, soluble protein content, and soluble sugar content of roots. Under condition with cadmium stress, the presence of attapulgite clay significantly alleviated the cadmium-induced increases of leaves cadmium content, qN and NPQ, and the cadmium content, MDA content, plasma membrane permeability, damage degree of root apical membrane, SOD, POD, and APX activity of the roots. And, the alleviative effects of attapulgite clay on cadmium stress to A. membranaceus roots were more obvious with the increase of cadmium stress time. The above results showed that the addition of attapulgite clay into the growth substrate has certain alleviative effect on the cadmium stress to A. membranaceus seedlings.


Assuntos
Astragalus propinquus/efeitos dos fármacos , Cádmio/efeitos adversos , Argila , Compostos de Magnésio , Plântula/efeitos dos fármacos , Compostos de Silício , Ascorbato Peroxidases/metabolismo , Astragalus propinquus/fisiologia , Catalase/metabolismo , Clorofila/metabolismo , Malondialdeído/metabolismo , Raízes de Plantas , Plântula/fisiologia , Estresse Fisiológico , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...