Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 269(Pt 2): 132002, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38702009

RESUMO

This study aimed to investigate the chemical composition, structural properties, and biological properties of pectin polysaccharides (AP-FS, AP-QG, and AP-HG) isolated from different varieties of apple pomace. Based on the methylation and nuclear magnetic resonance analyses, the structure of AP-FS was determined to be composed of an α-1,4-linked homogalacturonan backbone that exhibited high levels of O-6 methylation. All pectins exhibit potent inhibitory activity against human colon cancer and human liver cancer cells, along with immunostimulatory effects. Among them, AP-FS exhibited the highest activity level. Finally, we further investigated the underlying mechanism behind the effect of AP-FS on RAW 264.7 cells using proteomics analysis. Our findings revealed that AP-FS triggers RAW 264.7 macrophage activation via NOD-like receptor (NLR), NF-κB, and mitogen-activated protein kinase (MAPK) signaling pathways. Therefore, our research contributes to a better understanding of the structure-function relationship among apple pectins, and AP-FS has the potential to be applied to dietary supplements targeting immunomodulation.


Assuntos
Malus , Pectinas , Pectinas/química , Pectinas/farmacologia , Malus/química , Camundongos , Animais , Células RAW 264.7 , Humanos , Relação Estrutura-Atividade , Metilação , NF-kappa B/metabolismo
2.
Foodborne Pathog Dis ; 20(3): 90-99, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36862127

RESUMO

Staphylococcus aureus is a major foodborne pathogen that leads to various diseases due to its biofilm and virulence factors. This study aimed to investigate the inhibitory effect of 2R,3R-dihydromyricetin (DMY), a natural flavonoid compound, on the biofilm formation and virulence of S. aureus, and to explore the mode of action using transcriptomic and proteomic analyses. Microscopic observation revealed that DMY could remarkably inhibit the biofilm formation by S. aureus, leading to a collapse on the biofilm architecture and a decrease in viability of biofilm cell. Moreover, the hemolytic activity of S. aureus was reduced to 32.7% after treatment with subinhibitory concentration of DMY (p < 0.01). Bioinformation analysis based on RNA-sequencing and proteomic profiling revealed that DMY induced 262 differentially expressed genes and 669 differentially expressed proteins (p < 0.05). Many downregulated genes and proteins related to surface proteins were involved in biofilm formation, including clumping factor A (ClfA), iron-regulated surface determinants (IsdA, IsdB, and IsdC), fibrinogen-binding proteins (FnbA, FnbB), and serine protease. Meanwhile, DMY regulated a wide range of genes and proteins enriched in bacterial pathogenesis, cell envelope, amino acid metabolism, purine and pyrimidine metabolism, and pyruvate metabolism. These findings suggest that DMY targets S. aureus through multifarious mechanisms, and especially prompt that interference of surface proteins in cell envelope would lead to attenuation of biofilm and virulence.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/genética , Virulência , Proteômica , Transcriptoma , Biofilmes , Proteínas de Membrana/genética , Antibacterianos/farmacologia
3.
Arch Virol ; 165(11): 2709-2713, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32880020

RESUMO

A novel plant virus with a positive single-stranded (+ss) RNA genome was detected in Taibei pomelo (Citrus grandis (L.) Osbeck cv. Taibeiyou) in China by high-throughput sequencing (HTS). Tentatively named "citrus yellow spot virus" (CiYSV), it has 8,061 nucleotides (nt) excluding the poly(A) tail and contains three open reading frames (ORFs). ORF1 is predicted to encode a replicase polyprotein (RP) with conserved domains typical of members of the family Betaflexiviridae. ORF2 encodes a protein sharing the highest sequence identity with the putative movement protein (MP) found in the negative-stranded RNA virus Trifolium pratense virus B (TpVB, MH982249, genus Cytorhabdovirus). ORF3 overlaps ORF2 by 137 nt and encodes a predicted coat protein (CP) that is distantly related to those of betaflexiviruses. Phylogenetic analysis based on the MP amino acid sequence showed that the CiYSV clustered with cytorhabdoviruses rather than betaflexiviruses, whilst trees based on the whole genome, RP, and CP showed it to belong to the family Betaflexiviridae but to be distinct from any other known betaflexiviruses. These results suggest that the CiYSV should be considered the first member of a tentative new genus in the family Betaflexiviridae.


Assuntos
Citrus/virologia , Flexiviridae/genética , Genoma Viral , Filogenia , Sequência de Aminoácidos , China , Fases de Leitura Aberta , RNA Viral/genética , Sequenciamento Completo do Genoma
4.
Bioresour Technol ; 291: 121894, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31387839

RESUMO

Microalgae accumulate starch and lipid as storage metabolites under nutrient depletion, which can be used as sustainable feedstock for biorefinery. Omics analysis coupled with enzymatic and genetic verifications uncovered a partial picture of pathways and important enzymes or regulators related to starch and lipid biosynthesis as well as the carbon partitioning between them under nutrient depletion conditions. Depletion of macronutrients (N, P, and S) resulted in considerable enhancement of starch and/or lipid content in microalgae, but the accompanying declined photosynthesis hampered the achievements of high concentrations. This review summarized the current knowledge on the pathways and the committed steps as well as their carbon allocation involved in starch and lipid biosynthesis, and focused on the manipulation of different nutrients and the alleviation of oxidative stress for enhanced storage metabolites production. The biological and engineering approaches to cope with the conflict between biomass production and storage metabolites accumulation are proposed.


Assuntos
Metabolismo dos Lipídeos , Microalgas/metabolismo , Nutrientes , Amido/metabolismo , Biomassa , Lipídeos
5.
Biotechnol Biofuels ; 12: 184, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31341515

RESUMO

BACKGROUND: Microalgal starch is regarded as a promising alternative to crop-based starch for biorefinery such as the production of biofuels and bio-based chemicals. The single or separate use of inorganic carbon source, e.g., CO2 and NaHCO3, caused aberrant pH, which restricts the biomass and starch production. The present study applied an in situ CO2-NaHCO3 system to regulate photosynthetic biomass and starch production along with starch quality in a marine green microalga Tetraselmis subcordiformis under nitrogen-depletion (-N) and nitrogen-limitation (±N) conditions. RESULTS: The CO2 (2%)-NaHCO3 (1 g L-1) system stabilized the pH at 7.7 in the -N cultivation, under which the optimal biomass and starch accumulation were achieved. The biomass and starch productivity under -N were improved by 2.1-fold and 1.7-fold, respectively, with 1 g L-1 NaHCO3 addition compared with the one without NaHCO3 addition. NaHCO3 addition alleviated the high-dCO2 inhibition caused by the single CO2 aeration, and provided sufficient effective carbon source HCO3 - for the maintenance of adequate photosynthetic efficiency and increase in photoprotection to facilitate the biomass and starch production. The amylose content was also increased by 44% under this CO2-bicarbonate system compared to the single use of CO2. The highest starch productivity of 0.73 g L-1 day-1 under -N cultivation and highest starch concentration of 4.14 g L-1 under ±N cultivation were both achieved with the addition of 1 g L-1 NaHCO3. These levels were comparable to or exceeded the current achievements reported in studies. The addition of 5 g L-1 NaHCO3 under ±N cultivation led to a production of high-amylose starch (59.3% of total starch), which could be used as a source of functional food. CONCLUSIONS: The in situ CO2-NaHCO3 system significantly improved the biomass and starch production in T. subcordiformis. It could also regulate the starch quality with varied relative amylose content under different cultivation modes for diverse downstream applications that could promote the economic feasibility of microalgal starch-based biofuel production. Adoption of this system in T. subcordiformis would facilitate the CO2 mitigation couple with its starch-based biorefinery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...