Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Energy Build ; 277: 112551, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36320632

RESUMO

Stringent lockdowns have been one of the defining features of the COVID-19 pandemic. Lockdowns have brought about drastic changes in living styles, including increased residential occupancy and telework practices predicted to last long. The variation in occupancy pattern and energy use needs to be assessed at the household level. Consequently, the new occupancy times will impact the performance of energy efficiency measures. To address these gaps, this work uses a real case study, a two-story residential building in the Okanagan Valley (British Columbia, Canada). Further, steady-state building energy simulations are performed on the HOT2000 tool to evaluate the resiliency of energy efficiency measures under a full lockdown. Three-year monitored energy data is analyzed to study the implications of COVID-19 lockdowns on HVAC and non-HVAC loads at a monthly temporal scale. The results show a marked change in energy use patterns and a higher increase in May 2020 compared to the previous two years. Calibrated energy models built on HOT2000 are then used to study the impacts of pre-COVID-19 (old normal occupancy) and post-COVID-19 (new normal occupancy) on energy upgrades performance. The simulations show that under higher occupancy times, the annual electricity use increased by 16.4%, while natural gas use decreased by 7.6%. The results indicate that overall residential buildings following pre-COVID-19 occupancy schedules had higher energy-saving potential than those with new normal occupancy. In addition, the variation in occupancy and stakeholder preferences directly impact the ranking of energy efficiency measures. Furthermore, this study identifies energy efficiency measures that provide flexibility for the decision-makers by identifying low-cost options feasible under a range of occupancy schedules.

2.
Renew Sustain Energy Rev ; 135: 110199, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34234620

RESUMO

Financial Incentives (FIs) for green buildings are a major component of energy policy planning and play a vital role in the promotion of sustainable development and carbon mitigation strategies. Despite the presence of numerous FIs in Canada, there is still a lack of understanding on their distribution and effectiveness. This review first investigates the FIs available for residential and commercial buildings in Canada, and then performs a comprehensive review of studies related to FIs' effectiveness evaluation. It is found that FIs for buildings in Canada can be distributed into four categories: tax, loans, grants, and rebates. Among these, rebates from utility providers are the most common and are administered in all provinces. In addition to these, special incentives are available for three end-users (low-income, aboriginal people, landlords and tenants) and for three types of buildings (heritage, non-profit and energy rated). A clear contrast is observed on FIs offered in three regulatory regimes (Federal, provincial and municipal). Four provinces (Alberta, British Columbia, Ontario and Quebec) are leading in green building efforts. The in-depth literature review was also used to develop an understanding on the criteria used in effectiveness evaluation and the factors impacting effectiveness. Based on the findings of different studies on FIs effectiveness, a generic approach for evaluation of FIs is proposed that can help in deploying successful FIs programs. The results of this review are of importance to the policymakers, government authorities, and utilities engaged in designing and improving FIs for energy efficient buildings.

3.
J Hazard Mater ; 401: 123865, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33113751

RESUMO

The life cycle impacts of treatment of typical oil-based drill cuttings (OBDCs) using three low-temperature thermal desorption (LTTD)-based systems, including thermomechanical cuttings cleaner (TCC), screw-type dryer (STD), and rotary drum dryer (RDD), were explored with a case study in British Columbia, Canada. Two energy supply scenarios, including diesel generator-based onsite (scenario i) and hydropower-based offsite (scenario ii) treatments, were considered in the assessment. The results show that RDD generated the lowest life cycle impacts in terms of damages to human health, ecosystems, and resources in scenario i. TCC-scenario ii generated the lowest impacts among all assessed cases, suggesting that using renewable energy can greatly reduce the impacts of LTTD-based OBDCs treatment. Also, net environmental benefits could be achieved considering the reuse of recovered oil, and the highest net environmental benefits were obtained in TCC-scenario ii. The process contribution analysis found that thermal desorption process accounted for 80-95 % of impacts in almost all impact categories. Energy consumption contours and linear regression models were also developed to help drilling waste managers estimate the life cycle impacts of using hydropower-driven TCC to treat OBDCs with different water and oil contents.

4.
J Clean Prod ; 271: 122430, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32834562

RESUMO

Occupant behavior in residential buildings has a direct impact on the effectiveness of energy-saving measures. In order to realize a buildings' carbon mitigation targets, the impact of individual occupancy profiles needs to be integrated with building simulation models. This paper introduces a decision support framework as a potential solution to make energy performance upgrade choices based on different occupancy profiles. This framework has been demonstrated through a case study of two single-family detached homes in Canada, which were highly instrumented with sensors for monitoring energy input and output. The case studies represented two common occupancy profiles-(1) a family of four (consisting of 2 working adults and 2 teenagers); and (2) a retired couple. Firstly, calibrated energy models were developed by using one-year energy use data collected through an intrusive load monitoring technique. Secondly, energy upgrade combinations were considered for each profile and tested for additional investment, payback period and greenhouse gas (GHG) emissions. Lastly, the most suitable combination of energy upgrade for each profile was ranked using a multi-criteria decision-making method (e.g., TOPSIS). Results indicated that the retired couple used more energy than the family of four and required energy upgrades with usually higher payback periods to achieve the same level of GHG emission reduction. The results of this research are timely for energy policymaking and developing best management practices, which need to be implemented along with the deployment of more stringent building standards and codes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...