Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Eye Res ; 191: 107902, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31884019

RESUMO

Microglial cells are important contributors to the neuroinflammation and blood vessel damage that occurs in ischemic retinopathies. We hypothesized that key effectors of the renin-angiotensin aldosterone system, angiotensin II (Ang II) and aldosterone, increase the density of microglia in the retina and stimulate their production of reactive oxygen species (ROS) as well as pro-angiogenic and pro-inflammatory factors. Two animal models were studied that featured up-regulation of Ang II or aldosterone and included transgenic Ren-2 rats which overexpress renin and Ang II in tissues including the retina, and Sprague Dawley rats with ischemic retinopathy and infused with aldosterone. Complementary studies were performed in primary cultures of retinal microglia from neonatal Sprague Dawley rats exposed to hypoxia (0.5% O2) and inhibitors of the angiotensin type 1 receptor (valsartan), the mineralocorticoid receptor (spironolactone) or aldosterone synthase (FAD286). In both in vivo models, the density of ionized calcium-binding adaptor protein-1 labelled microglia/macrophages was increased in retina compared to genetic or vehicle controls. In primary cultures of retinal microglia, hypoxia increased ROS (superoxide) levels as well as the expression of the NADPH oxidase (NOX) isoforms, NOX1, NOX2 and NOX4. The elevated levels of ROS as well as NOX2 and NOX4 were reduced by all of the treatments, and valsartan and FAD286 also reduced NOX1 mRNA levels. A protein cytokine array of retinal microglia revealed that valsartan, spironolactone and FAD286 reduced the hypoxia-induced increase in the potent pro-angiogenic and pro-inflammatory agent, vascular endothelial growth factor as well as the inflammatory factors, CCL5 and interferon γ. Valsartan also reduced the hypoxia-induced increase in IL-6 and TIMP-1 as well as the chemoattractants, CXCL2, CXCL3, CXCL5 and CXCL10. Spironolactone and FAD286 reduced the levels of CXCL2 and CXCL10, respectively. In conclusion, our findings that both Ang II and aldosterone influence the activation of retinal microglia implicates the renin-angiotensin aldosterone system in the pathogenesis of ischemic retinopathies.


Assuntos
Aldosterona/farmacologia , Angiotensina II/farmacologia , Microglia/efeitos dos fármacos , Neurônios Retinianos/efeitos dos fármacos , Vasoconstritores/farmacologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Citocromo P-450 CYP11B2/metabolismo , Feminino , Imuno-Histoquímica , Microglia/metabolismo , Oxigênio/toxicidade , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores de Mineralocorticoides/metabolismo , Neovascularização Retiniana/etiologia , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Neurônios Retinianos/metabolismo , Retinopatia da Prematuridade/etiologia , Retinopatia da Prematuridade/metabolismo , Retinopatia da Prematuridade/patologia
2.
J Am Heart Assoc ; 6(6)2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28615213

RESUMO

BACKGROUND: Cardiac hypertrophy increases the risk of developing heart failure and cardiovascular death. The neutrophil inflammatory protein, lipocalin-2 (LCN2/NGAL), is elevated in certain forms of cardiac hypertrophy and acute heart failure. However, a specific role for LCN2 in predisposition and etiology of hypertrophy and the relevant genetic determinants are unclear. Here, we defined the role of LCN2 in concentric cardiac hypertrophy in terms of pathophysiology, inflammatory expression networks, and genomic determinants. METHODS AND RESULTS: We used 3 experimental models: a polygenic model of cardiac hypertrophy and heart failure, a model of intrauterine growth restriction and Lcn2-knockout mouse; cultured cardiomyocytes; and 2 human cohorts: 114 type 2 diabetes mellitus patients and 2064 healthy subjects of the YFS (Young Finns Study). In hypertrophic heart rats, cardiac and circulating Lcn2 was significantly overexpressed before, during, and after development of cardiac hypertrophy and heart failure. Lcn2 expression was increased in hypertrophic hearts in a model of intrauterine growth restriction, whereas Lcn2-knockout mice had smaller hearts. In cultured cardiomyocytes, Lcn2 activated molecular hypertrophic pathways and increased cell size, but reduced proliferation and cell numbers. Increased LCN2 was associated with cardiac hypertrophy and diastolic dysfunction in diabetes mellitus. In the YFS, LCN2 expression was associated with body mass index and cardiac mass and with levels of inflammatory markers. The single-nucleotide polymorphism, rs13297295, located near LCN2 defined a significant cis-eQTL for LCN2 expression. CONCLUSIONS: Direct effects of LCN2 on cardiomyocyte size and number and the consistent associations in experimental and human analyses reveal a central role for LCN2 in the ontogeny of cardiac hypertrophy and heart failure.


Assuntos
Cardiomegalia/genética , Regulação da Expressão Gênica , Insuficiência Cardíaca/genética , Lipocalina-2/genética , Prenhez , RNA/genética , Animais , Cardiomegalia/diagnóstico , Cardiomegalia/metabolismo , Células Cultivadas , Ecocardiografia , Feminino , Seguimentos , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/metabolismo , Humanos , Lipocalina-2/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Gravidez , Estudos Prospectivos , Ratos , Ratos Endogâmicos WKY
3.
Front Immunol ; 6: 497, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26557116

RESUMO

Microglia are often referred to as the immune cells of the brain. They are most definitely involved in immune responses to invading pathogens and inflammatory responses to tissue damage. However, recent results suggest microglia are vital for normal functioning of the brain. Neuroinflammation, as well as more subtle changes, in microglial function has been implicated in the pathogenesis of many brain diseases and disorders. Upon sensing alterations in their local environment, microglia change their shape and release factors that can modify the excitability of surrounding neurons. During neuroinflammation, microglia proliferate and release NO, reactive oxygen species, cytokines and chemokines. If inflammation resolves then their numbers normalize again via apoptosis. Microglia express a wide array of ion channels and different types are implicated in all of the cellular processes listed above. Modulation of microglial ion channels has shown great promise as a therapeutic strategy in several brain disorders. In this review, we discuss recent advances in our knowledge of microglial ion channels and their roles in responses of microglia to changes in the extracellular milieu.

4.
Am J Physiol Renal Physiol ; 309(11): F943-54, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26400542

RESUMO

Cardiovascular disease, including cardiac hypertrophy, is common in patients with kidney disease and can be partially attenuated using blockers of the renin-angiotensin system (RAS). It is unknown whether cardiac microRNAs contribute to the pathogenesis of cardiac hypertrophy or to the protective effect of RAS blockade in kidney disease. Using a subtotal nephrectomy rat model of kidney injury, we investigated changes in cardiac microRNAs that are known to have direct target genes involved in the regulation of apoptosis, fibrosis, and hypertrophy. The effect of treatment with the angiotensin-converting enzyme (ACE) inhibitor ramipril on cardiac microRNAs was also investigated. Kidney injury led to a significant increase in cardiac microRNA-212 and microRNA-132 expression. Ramipril reduced cardiac hypertrophy, attenuated the increase in microRNA-212 and microRNA-132, and significantly increased microRNA-133 and microRNA-1 expression. There was altered expression of caspase-9, B cell lymphoma-2, transforming growth factor-ß, fibronectin 1, collagen type 1A1, and forkhead box protein O3, which are all known to be involved in the regulation of apoptosis, fibrosis, and hypertrophy in cardiac cells while being targets for the above microRNAs. ACE inhibitor treatment increased expression of microRNA-133 and microRNA-1. The inhibitory action of ACE inhibitor treatment on increased cardiac NADPH oxidase isoform 1 expression after subtotal nephrectomy surgery suggests that inhibition of oxidative stress is also one of mechanism of ACE inhibitor-mediated cardioprotection. These finding suggests the involvement of microRNAs in the cardioprotective action of ACE inhibition in acute renal injury, which is mediated through an inhibitory action on profibrotic and proapoptotic target genes and stimulatory action on antihypertrophic and antiapoptotic target genes.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Cardiomegalia/prevenção & controle , MicroRNAs/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Ramipril/farmacologia , Injúria Renal Aguda/enzimologia , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Cardiomegalia/enzimologia , Cardiomegalia/genética , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Linhagem Celular , Colágeno/metabolismo , Citoproteção , Modelos Animais de Doenças , Fibrose , Rim/efeitos dos fármacos , Rim/enzimologia , Rim/patologia , MicroRNAs/genética , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , NADH NADPH Oxirredutases/metabolismo , NADPH Oxidase 1 , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
5.
Physiol Rep ; 3(4)2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25896982

RESUMO

Progressive reduction in kidney function in patients following myocardial infarction (MI) is associated with an increase in circulating uremic toxins levels leading to increased extracellular matrix deposition. We have recently reported that treatment with uremic toxin adsorbent AST-120 in rats with MI inhibits serum levels of uremic toxin indoxyl sulfate (IS) and downregulates expression of cardiac profibrotic cytokine transforming growth factor beta (TGF-ß1). In this study, we examined the effect of uremic toxins post-MI on cardiac microRNA-21 and microRNA-29b expression, and also the regulation of target genes and matrix remodeling proteins involved in TGFß1 and angiotensin II signaling pathways. Sixteen weeks after MI, cardiac tissues were assessed for pathological and molecular changes. The percentage area of cardiac fibrosis was 4.67 ± 0.17 in vehicle-treated MI, 2.9 ± 0.26 in sham, and 3.32 ± 0.38 in AST-120-treated MI, group of rats. Compared to sham group, we found a twofold increase in the cardiac expression of microRNA-21 and 0.5-fold decrease in microRNA-29b in heart tissue from vehicle-treated MI. Treatment with AST-120 lowered serum IS levels and attenuated both, cardiac fibrosis and changes in expression of these microRNAs observed after MI. We also found increased mRNA expression of angiotensin-converting enzyme (ACE) and angiotensin receptor 1a (Agtr1a) in cardiac tissue collected from MI rats. Treatment with AST-120 attenuated both, expression of ACE and Agtr1a mRNA. Exposure of rat cardiac fibroblasts to IS upregulated angiotensin II signaling and altered the expression of both microRNA-21 and microRNA-29b. These results collectively suggest a clear role of IS in altering microRNA-21 and microRNA-29b in MI heart, via a mechanism involving angiotensin signaling pathway, which leads to cardiac fibrosis.

6.
Auton Neurosci ; 185: 43-50, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24794248

RESUMO

Following myocardial infarction, microglia, the immune cells in the central nervous system, become activated in the hypothalamic paraventricular nucleus (PVN) suggesting inflammation in this nucleus. Little is known about other brain nuclei. In the present study, we investigated whether the rostral ventrolateral medulla (RVLM), the nucleus tractus solitarius (NTS) and the periaqueductal grey (PAG), regions known to have important cardiovascular regulatory functions, also show increased microglial activation and whether this coincides with increased neuronal activity. We also investigated whether minocycline inhibited microglial activation and whether this also affected neuronal activity and cardiac function. Compared to controls there was a significant increase in the proportion of activated microglia and neuronal activation in the PVN, RVLM, NTS and PAG, 12weeks following myocardial infarction (P<0.001). Intracebroventricular infusion of minocycline (beginning one week prior to infarction) significantly attenuated the increase in microglial activation by at least 50% in the PVN, RVLM, PAG and NTS, and neuronal activation was significantly reduced by 50% in the PVN and virtually abolished in the PAG, RVLM and NTS. Cardiac function (percent fractional shortening) was significantly reduced by 55% following myocardial infarction but this was not ameliorated by minocycline treatment. The results suggest that following myocardial infarction, inflammation occurs in brain nuclei that play key roles in cardiovascular regulation and that attenuation of this inflammation may not be sufficient to ameliorate cardiac function.


Assuntos
Encéfalo/efeitos dos fármacos , Microglia/efeitos dos fármacos , Minociclina/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Encéfalo/patologia , Encéfalo/fisiopatologia , Imuno-Histoquímica , Masculino , Microglia/patologia , Microglia/fisiologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Neuroimunomodulação/efeitos dos fármacos , Neuroimunomodulação/fisiologia , Neurônios/patologia , Neurônios/fisiologia , Fotomicrografia , Ratos Sprague-Dawley
7.
Antioxid Redox Signal ; 20(17): 2726-40, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24053718

RESUMO

AIMS: Ischemic retinal diseases such as retinopathy of prematurity are major causes of blindness due to damage to the retinal microvasculature. Despite this clinical situation, retinopathy of prematurity is mechanistically poorly understood. Therefore, effective preventative therapies are not available. However, hypoxic-induced increases in reactive oxygen species (ROS) have been suggested to be involved with NADPH oxidases (NOX), the only known dedicated enzymatic source of ROS. Our major aim was to determine the contribution of NOX isoforms (1, 2, and 4) to a rodent model of retinopathy of prematurity. RESULTS: Using a genetic approach, we determined that only mice with a deletion of NOX1, but not NOX2 or NOX4, were protected from retinal neovascularization and vaso-obliteration, adhesion of leukocytes, microglial accumulation, and the increased generation of proangiogenic and proinflammatory factors and ROS. We complemented these studies by showing that the specific NOX inhibitor, GKT137831, reduced vasculopathy and ROS levels in retina. The source of NOX isoforms was evaluated in retinal vascular cells and neuro-glial elements. Microglia, the immune cells of the retina, expressed NOX1, 2, and 4 and responded to hypoxia with increased ROS formation, which was reduced by GKT137831. INNOVATION: Our studies are the first to identify the NOX1 isoform as having an important role in the pathogenesis of retinopathy of prematurity. CONCLUSIONS: Our findings suggest that strategies targeting NOX1 have the potential to be effective treatments for a range of ischemic retinopathies.


Assuntos
Isquemia/genética , NADPH Oxidases/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Retinopatia da Prematuridade/genética , Animais , Modelos Animais de Doenças , Humanos , Isquemia/metabolismo , Isquemia/patologia , Glicoproteínas de Membrana/biossíntese , Glicoproteínas de Membrana/genética , Camundongos , NADPH Oxidase 1 , NADPH Oxidase 2 , NADPH Oxidase 4 , NADPH Oxidases/genética , Oxirredução , Pirazóis/administração & dosagem , Pirazolonas , Piridinas/administração & dosagem , Piridonas , Retinopatia da Prematuridade/metabolismo , Retinopatia da Prematuridade/patologia , Lesões do Sistema Vascular/enzimologia
8.
Clin Sci (Lond) ; 124(10): 597-615, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23379642

RESUMO

Pathological angiogenesis is a key feature of many diseases including retinopathies such as ROP (retinopathy of prematurity) and DR (diabetic retinopathy). There is considerable evidence that increased production of ROS (reactive oxygen species) in the retina participates in retinal angiogenesis, although the mechanisms by which this occurs are not fully understood. ROS is produced by a number of pathways, including the mitochondrial electron transport chain, cytochrome P450, xanthine oxidase and uncoupled nitric oxide synthase. The family of NADPH oxidase (Nox) enzymes are likely to be important given that their primary function is to produce ROS. Seven isoforms of Nox have been identified named Nox1-5, Duox (dual oxidase) 1 and Duox2. Nox1, Nox2 and Nox4 have been most extensively studied and are implicated in the development of conditions such as hypertension, cardiovascular disease and diabetic nephropathy. In recent years, evidence has accumulated to suggest that Nox1, Nox2 and Nox4 participate in pathological angiogenesis; however, there is no clear consensus about which Nox isoform is primarily responsible. In terms of retinopathy, there is growing evidence that Nox contribute to vascular injury. The RAAS (renin-angiotensin-aldosterone system), and particularly AngII (angiotensin II), is a key stimulator of Nox. It is known that a local RAAS exists in the retina and that blockade of AngII and aldosterone attenuate pathological angiogenesis in the retina. Whether the RAAS influences the production of ROS derived from Nox in retinopathy is yet to be fully determined. These topics will be reviewed with a particular emphasis on ROP and DR.


Assuntos
Angiotensina II , Retinopatia Diabética/etiologia , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio , Retinopatia da Prematuridade/etiologia , Animais , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Recém-Nascido , Recém-Nascido Prematuro , Inflamação/fisiopatologia , Glicoproteínas de Membrana/metabolismo , Modelos Animais , NADPH Oxidase 1 , NADPH Oxidase 2 , NADPH Oxidase 4 , NF-kappa B/metabolismo , Neovascularização Patológica , Estresse Oxidativo , Sistema Renina-Angiotensina , Retina/fisiologia
9.
Auton Neurosci ; 169(2): 70-6, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22591793

RESUMO

Microglia are the immune cells in the central nervous system and can produce cytokines when they are activated by an insult or injury. In the present study, we investigated in detail the time frame of the activation of microglia in the hypothalamic paraventricular nucleus (PVN) following myocardial infarction in rats. Morphological changes and immunohistochemistry to detect CD11b (clone OX-42) were used to identify activated microglia. Compared to rats that had undergone sham surgical procedures, there was a significant increase of between 40 and 50% in the proportion of activated microglia in the PVN 4-16 weeks following myocardial infarction (P<0.001, One way ANOVA). At 24h or 1 week post myocardial infarction, however, there was no significant increase in the proportion of activated microglia. Echocardiography and haemodynamic parameters after myocardial infarction indicated significantly reduced left ventricular function. In conclusion, following myocardial infarction, activation of microglia in the PVN does not occur immediately but once manifested, activation is sustained. Thus, activated microglia may contribute to the chronic elevation in cytokine levels observed following myocardial infarction. Since cytokines elicit sympatho-excitatory effects when locally microinjected into the PVN, activated microglia may contribute to the mechanisms mediating the chronic increase in sympathetic nerve activity in animals with reduced left ventricular function induced following myocardial infarction.


Assuntos
Microglia/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Animais , Citocinas/metabolismo , Ecocardiografia , Hemodinâmica/fisiologia , Imuno-Histoquímica , Masculino , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
10.
Brain Res ; 1326: 96-104, 2010 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-20156424

RESUMO

Following a myocardial infarction (MI), inflammatory cytokines are elevated in the brain, as well as in plasma, indicating that inflammation is occurring in the brain in addition to the periphery. Microglia are the immune cells in the central nervous system and can produce cytokines when they are activated by an insult or injury. In the present study, we investigated whether MI in rats induces activation of microglia in the brain. We used immunohistochemistry to detect CD11b (clone OX-42) and morphological changes to identify activated microglia. Compared to control rats that had undergone sham surgical procedures, there was a significant increase in activated microglia in the hypothalamic paraventricular nucleus (PVN) following myocardial infarction. Activated microglia were not observed in the ventral hypothalamus, adjacent to the PVN, nor in the cortex, indicating the response was not the result of a generalized inflammatory reaction in the brain. Echocardiography and haemodynamic parameters after myocardial infarction indicated that reduced left ventricular function but congestive heart failure had not developed. In conclusion, microglia are activated in the PVN but not in the adjacent hypothalamus following myocardial infarction. The activated microglia may contribute to the increased local production of pro-inflammatory cytokines observed in the PVN after myocardial infarction and resulting in reduced left ventricular function.


Assuntos
Microglia/patologia , Infarto do Miocárdio/patologia , Núcleo Hipotalâmico Paraventricular/patologia , Animais , Antígeno CD11b/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Eletrocardiografia/métodos , Hemodinâmica/fisiologia , Pulmão/patologia , Masculino , Microglia/metabolismo , Infarto do Miocárdio/fisiopatologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
11.
Toxicol In Vitro ; 24(1): 40-4, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19781625

RESUMO

Cytotoxicity of the two pesticides, thiram and endosulfan, have been studied in Ehrlich ascites tumor cells. Thiram cytotoxicity was much lower than that of endosulfan with LC(50) (1h exposure) of 4.02 and 1.12mM, respectively. The cytotoxic action of the pesticides on the cells were characterised by glutathione depletion, induction of reactive oxygen species (ROS). The cell death induced by the pesticides was of necrotic type as confirmed by lactate dehydrogenase (LDH) leakage. At non-cytotoxic concentration, thiram potentiated the cytotoxicity of endosulfan when cells were exposed to a mixture of both chemicals. The mechanisms involved in the potentiation of cytotoxicity include excessive glutathione depletion and induction ROS which were higher than the additive effects of individual chemicals. The study demonstrates the importance of pesticide interactions in toxicity risk assessment.


Assuntos
Carcinoma de Ehrlich/patologia , Endossulfano/toxicidade , Fungicidas Industriais/toxicidade , Inseticidas/toxicidade , Tiram/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Glutationa/metabolismo , L-Lactato Desidrogenase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...