Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 222: 371-385, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901500

RESUMO

Increasing the seed germination potential and seedling growth rates play a pivotal role in increasing overall crop productivity. Seed germination and early vegetative (seedling) growth are critical developmental stages in plants. High-power microwave (HPM) technology has facilitated both the emergence of novel applications and improvements to existing in agriculture. The implications of pulsed HPM on agriculture remain unexplored. In this study, we have investigated the effects of pulsed HPM exposure on barley germination and seedling growth, elucidating the plausible underlying mechanisms. Barley seeds underwent direct HPM irradiation, with 60 pulses by 2.04 mJ/pulse, across three distinct irradiation settings: dry, submerged in deionized (DI) water, and submerged in DI water one day before exposure. Seed germination significantly increased in all HPM-treated groups, where the HPM-dry group exhibited a notable increase, with a 2.48-fold rise at day 2 and a 1.9-fold increment at day 3. Similarly, all HPM-treated groups displayed significant enhancements in water uptake, and seedling growth (weight and length), as well as elevated levels of chlorophyll, carotenoids, and total soluble protein content. The obtained results indicate that when comparing three irradiation setting, HPM-dry showed the most promising effects. Condition HPM seed treatment increases the level of reactive species within the barley seedlings, thereby modulating plant biochemistry, physiology, and different cellular signaling cascades via induced enzymatic activities. Notably, the markers associated with plant growth are upregulated and growth inhibitory markers are downregulated post-HPM exposure. Under optimal HPM-dry treatment, auxin (IAA) levels increased threefold, while ABA levels decreased by up to 65 %. These molecular findings illuminate the intricate regulatory mechanisms governing phenotypic changes in barley seedlings subjected to HPM treatment. The results of this study might play a key role to understand molecular mechanisms after pulsed-HPM irradiation of seeds, contributing significantly to address the global need of sustainable crop yield.

2.
Drug Metab Pharmacokinet ; 54: 100536, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081105

RESUMO

Nonthermal biocompatible plasma (NBP) is a promising option for improving medication absorption into the human skin. Currently, most plasma devices for cosmetics employ a floating-electrode plasma source for treating the skin. Human skin serves as the ground electrode in the floating-electrode plasma discharge, and discharge occurs between the skin and electrodes of the device. In this in vitro study, we aimed to evaluate the effect of NBP on the skin permeation of niacinamide. We have quantified the transdermal absorption rates of niacinamide in both untreated skin and skin treated with NBP for a duration of 10 s. The absorption of niacinamide for both without and with NBP treatment was observed until 12 h incubation time. Without plasma treatment, the human skin exhibited stable and low transdermal absorption of niacinamide up to 12 h. However, the NBP treatment significantly increased the transdermal absorption of niacinamide from 0.5 h to 6 h and continuously increased skin penetration over a duration of more than 12 h incubation period. The obtained results suggest that NBP-treated human skin showed a 60-fold higher penetration rate than non-treated skin. The increased penetration rate of niacinamide can be mainly attributed to plasmaporation subsequent to NBP treatment. The findings of this study demonstrate that NBP treatment results in remarkable skin permeability, making it a promising candidate for both cosmetic and pharmaceutical delivery applications.


Assuntos
Absorção Cutânea , Pele , Humanos , Administração Cutânea , Pele/metabolismo , Preparações Farmacêuticas/metabolismo , Niacinamida/metabolismo , Niacinamida/farmacologia , Permeabilidade
3.
Front Cell Dev Biol ; 11: 1067861, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910143

RESUMO

Background: Pulsed high-power microwave (HPM) has many applications and is constantly being researched to expand its uses in the future. As the number of applications grows, the biological effects and safety level of pulsed HPM become a serious issue, requiring further research. Objective: The brain is regarded as the most vulnerable organ to radiation, raising concerns about determining an acceptable level of exposure. The effect of nanosecond pulses and the mechanisms underlying HPM on the brain has not been studied. For the first time, we observed the effect of pulsed 3.5 GHz HPM on brain normal astrocytes and cancer U87 MG cells, as well as the likely mechanisms involved. Methods: To generate 3.5 GHz HPM, an axial virtual cathode oscillator was constructed on pulsed power generator "Chundoong". The cells were directly exposed to HPM (10, 25, 40, and 60) pulses (1 mJ/pulse), with each pulse delivered after 1 min of charging time to evaluate the dose dependent effects. Results: A strong electric field (∼23 kV/cm) of HPM irradiation primarily causes the production of reactive oxygen species (ROS), altering cell viability, mitochondrial activity, and cell death rates in U87 and astrocytes at certain dosages. The ROS generation in response to HPM exposure was primarily responsible for DNA damage and p53 activation. The hazardous dosage of 60 pulses is acknowledged as having damaging effects on brain normal cells. Interestingly, the particular 25 pulses exhibited therapeutic effects on U87 cells via p53, Bax, and Caspase-3 activation. Conclusion: HPM pulses induced apoptosis-related events such as ROS burst and increased oxidative DNA damage at higher dosages in normal cells and specific 25 pulses in cancer U87. These findings are useful to understand the physiological mechanisms driving HPM-induced cell death, as well as the safety threshold range for HPM exposure on normal cells and therapeutic effects on cancer U87. As HPM technology advances, we believe this study is timely and will benefit humanity and future research.

4.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36982365

RESUMO

Optimizing the therapeutic range of nonthermal atmospheric pressure plasma (NTAPP) for biomedical applications is an active research topic. For the first time, we examined the effect of plasma on-times in this study while keeping the duty ratio and treatment time fixed. We have evaluated the electrical, optical, and soft jet properties for two different duty ratios of 10% and 36%, using the plasma on-times of 25, 50, 75, and 100 ms. Furthermore, the influence of plasma on-time on reactive oxygen and nitrogen species (ROS/RNS) levels in plasma treated medium (PTM) was also investigated. Following treatment, the characteristics of (DMEM media) and PTM (pH, EC, and ORP) were also examined. While EC and ORP rose by raising plasma on-time, pH remained unchanged. Finally, the PTM was used to observe the cell viability and ATP levels in U87-MG brain cancer cells. We found it interesting that, by increasing the plasma on-time, the levels of ROS/RNS dramatically increased in PTM and significantly affected the viability and ATP levels of the U87-MG cell line. The results of this study provide a significant indication of advancement by introducing the optimization of plasma on-time to increase the efficacy of the soft plasma jet for biomedical applications.


Assuntos
Trifosfato de Adenosina , Gases em Plasma , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Sobrevivência Celular , Trifosfato de Adenosina/farmacologia , Gases em Plasma/química , Espécies Reativas de Nitrogênio/metabolismo
5.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36012552

RESUMO

Modern humanity wades daily through various radiations, resulting in frequent exposure and causing potentially important biological effects. Among them, the brain is the organ most sensitive to electromagnetic radiation (EMR) exposure. Despite numerous correlated studies, critical unknowns surround the different parameters used, including operational frequency, power density (i.e., energy dose), and irradiation time that could permit reproducibility and comparability between analyses. Furthermore, the interactions of EMR with biological systems and its precise mechanisms remain poorly characterized. In this review, recent approaches examining the effects of microwave radiations on the brain, specifically learning and memory capabilities, as well as the mechanisms of brain dysfunction with exposure as reported in the literature, are analyzed and interpreted to provide prospective views for future research directed at this important and novel medical technology for developing preventive and therapeutic strategies on brain degeneration caused by microwave radiation. Additionally, the interactions of microwaves with biological systems and possible mechanisms are presented in this review. Treatment with natural products and safe techniques to reduce harm to organs have become essential components of daily life, and some promising techniques to treat cancers and their radioprotective effects are summarized as well. This review can serve as a platform for researchers to understand the mechanism and interactions of microwave radiation with biological systems, the present scenario, and prospects for future studies on the effect of microwaves on the brain.


Assuntos
Encéfalo , Micro-Ondas , Aprendizagem , Micro-Ondas/efeitos adversos , Estudos Prospectivos , Reprodutibilidade dos Testes
6.
Pharmaceutics ; 14(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35214198

RESUMO

Non-thermal biocompatible plasma (NBP) was considered as an efficient tool in tissue engineering to modify the surface of biomaterials. Three-dimensional chitosan scaffolds have been extensively used in different ways because it holds some remarkable properties, including biodegradability and biocompatibility. In this study, we evaluated the osteogenic potential of NBP-treated chitosan scaffolds using two different plasma sources: a dielectric barrier discharge (NBP-DBD) and a soft jet (NBP-J). The surface modification of the scaffold was evaluated using scanning electron microscopy. For osteogenic differentiation of cells, proliferation and differentiation were tested by using bone marrow-derived stem cells (BMSCs). We observed that cell viability using NBP-DBD and NBP-J treated chitosan scaffolds yielded significant improvements in cell viability and differentiation. The results obtained with MTT and live/dead assays showed that NBP-modified scaffold increases cell metabolic by MTT assay and live/dead assay. It also observed that the NBP treatment is more effective at 5 min with DBD and was selected for further investigations. Enhanced osteogenic differentiation was observed using NBP-treated scaffolds, as reflected by increased alkaline phosphatase activity. Our findings showed that NBP is an innovative and beneficial tool for modifying chitosan scaffolds to increase their activity, making them suitable as biocompatible materials and for bone tissue engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...