Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38679285

RESUMO

OBJECTIVE: During physical activities, chondrocytes experience coupled stimulation of hydrostatic pressure (HP) and a transient increase in temperature (T), with the latter varying within a physiological range from 32.5 °C to 38.7 °C. Previous short-term in vitro studies have demonstrated that the combined hydrostatic pressure-thermal (HP-T) stimuli more significantly enhance chondroinduction and chondroprotection of chondrocytes than isolated applications. Interestingly, this combined benefit is associated with a corresponding increase in HSP70 levels when HP and T are combined. The current study therefore explored the indispensable role of HSP70 in mediating the combined effects of HP-T stimuli on chondrocytes. DESIGN: In this mid-long-term study of in vitro engineered cartilage constructs, we assessed chondrocyte responses to HP-T stimuli using customized bioreactor in standard and HSP70-inhibited cultures. RESULTS: Surprisingly, under HSP70-inhibited conditions, the usually beneficial HP-T stimuli, especially its thermal component, exerted detrimental effects on chondrocyte homeostasis, showing a distinct and unfavorable shift in gene and protein expression patterns compared to non-HSP70-inhibited settings. Such effects were corroborated through mechanical testing and confirmed using a secondary cell source. A proteomic-based mechanistic analysis revealed a disruption in the balance between biosynthesis and fundamental cellular structural components in HSP70-inhibited conditions under HP-T stimuli. CONCLUSIONS: Our results highlight the critical role of sufficient HSP70 induction in mediating the beneficial effects of coupled HP-T stimulation on chondrocytes. These findings help pave the way for new therapeutic approaches to enhance physiotherapy outcomes and potentially shed light on the elusive mechanisms underlying the onset of cartilage degeneration, a long-standing enigma in orthopedics.

2.
Ann Med Surg (Lond) ; 86(4): 2339-2342, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38576991

RESUMO

Introduction: Ileocecal knot syndrome, a rare cause of small bowel obstruction where the ileum wraps around the cecum, poses a significant challenge for preoperative diagnosis. Prompt intervention is crucial due to the risk of rapid bowel deterioration and increased mortality. Case presentation: A 45-year-old female presented with central abdominal pain associated with vomiting, abdominal distension, and obstipation. On examination, she was ill-looking with hypotension, tachycardia with a feeble pulse, direct and rebound abdominal tenderness, and absent bowel sounds. Aggressive fluid resuscitation was done. Based on the clinical presentation and abdominal radiograph suggestive of intestinal obstruction, an emergency exploratory laparotomy was done, which showed an ileocecal knot and 130 cm of gangrenous ileum. Peritoneal lavage followed by resection of non-viable ileum with double barrel ileostomy was done. Discussion: Ileosigmoid, appendico-ileal, ileoileal, and ileocecal knotting are the various types of intestinal knotting, with very few cases of ileocecal knotting being reported. Intestinal knotting causes severe bowel obstruction, resulting in reduced mucosal perfusion, progressive ischemia, and peritonitis, leading to high mortality. X-ray findings of multiple air-fluid levels are non-specific, and for definitive diagnosis, laparotomy is required. Assessing bowel viability before definitive surgery is essential. Despite positive outcomes, extensive resection can lead to malabsorption and ileus, with potential risk for developing short bowel syndrome. Conclusion: Despite its rarity, the possibility of ileocecal knotting should be considered in cases of small bowel obstruction due to its potential for rapid deterioration. Prompt resuscitation followed by emergency laparotomy is necessary to prevent mortality.

3.
Int J Radiat Biol ; 100(4): 627-649, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38319050

RESUMO

PURPOSE: Sustainable wheat production and higher genetic gains can be realized by broadening the genetic base and improving the well adapted varieties. In the present study, a multi-year experiment involving induced mutagenesis was conducted to create genetic variation, assess trait associations and genetic divergence in four wheat varieties with differential grain texture treated with six doses of gamma rays and ethyl methane sulfonate using ten agro-morphological traits. MATERIALS AND METHODS: Healthy selfed seeds of four bread wheat varieties with differential texture were irradiated using six doses ranging from 175 Gy-300 Gy of gamma rays (Co60: BARC, Mumbai) and six concentrations of ethyl methanesulfonate (0.3-1.3%) (Sigma-Aldrich, Bangalore, India) to evaluate variability, character association and degree of genetic diversity induced among the mutagenic treatments of wheat varieties with differential grain texture. RESULTS: Significant inter-population differences were observed for almost all the traits. The sample mean of twelve mutant populations in each of the cultivar exhibited superior quantitative phenotypic traits and increased values of the genetic parameters. Based on association and variability studies, plant height, spike length, grain filling period, biological yield per plant and harvest index can be used as early generation criteria for maximum genetic improvement. Multivariate studies indicated the contribution of various traits towards divergence and indicated the efficiency of mutagens in generating variability. Gamma-irradiation dosages between 200-250 Gy and 0.5-1.1% EMS for soft-textured varieties, whereas doses between 225-275 Gy and 0.5-0.9% EMS were found to be most potent for semi-hard-textured varieties. CONCLUSIONS: Assessment of mutagen sensitivity showed that semi-hard wheat varieties were responsive to both mutagens, particularly EMS and generated higher variability and divergence than the soft textured varieties. Hence, gamma rays were proved to be more effective in generating higher variability than ethyl methanesulfonate. A total of 117 putative mutants were identified with desirable agro-morphological attributes. Among these, mutants with higher inter-cluster distance can be used as parents in hybridization programs and serve as important genetic resources in future wheat improvement programs.


Assuntos
Pão , Triticum , Metanossulfonato de Etila/farmacologia , Triticum/genética , Raios gama/efeitos adversos , Índia , Genótipo , Fenótipo , Mutagênicos/farmacologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-38279722

RESUMO

BACKGROUND: Millions of individuals worldwide suffer from metabolic abnormalities induced by diabetes. Baicalein, a flavonoid, has shown several properties in various treatments with potential properties, including anti-inflammatory, antioxidant, and anti-diabetic properties. Practically, its application is hindered due to low solubility in aqueous media. Overcoming this challenge, aquasomes can offer an effective approach for delivering drugs and bioactive molecules to target various diseases. OBJECTIVE: The study aimed to develop and evaluate baicalein-loaded aquasomes for improving solubility and comparing their antidiabetic properties to acarbose through in silico docking. METHOD: Baicalein-loaded aquasomes were prepared through a three-step process: core preparation, lactose coating, and drug loading. The evaluation included assessing particle size, drug-excipient interactions, drug entrapment efficiency, loading capacity, in vitro drug release, and the kinetics of drug release. In silico docking and in vitro α-amylase inhibition activity was evaluated to assess the anti-diabetic potential of baicalein. RESULTS: The baicalein-loaded aquasomes were spherical with sizes ranging from 300-400 nm. FTIR analysis indicated no interaction between the components. The formulation exhibited drug entrapment efficiency of 94.04±0 4.01% and drug loading of 17.60 ± 01.03%. Drug release study showed sustained and complete (97.30 ± 02.06 %) release, following first-order kinetics. Docking analysis revealed comparable binding affinity to acarbose, while the α-amylase inhibition assay showed greater inhibition potential of the aquasomes compared to the baicalein solution. CONCLUSION: Aquasomes offer an alternative approach to conventional delivery methods. The selfassembling characteristics of aquasomes greatly simplify their preparation process, adding to their appeal as a drug delivery system.

5.
Biomacromolecules ; 25(2): 1144-1152, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38166194

RESUMO

Hyaline cartilage, a soft tissue enriched with a dynamic extracellular matrix, manifests as a supramolecular system within load-bearing joints. At the same time, the challenge of cartilage repair through tissue engineering lies in replicating intricate cellular-matrix interactions. This study attempts to investigate chondrocyte responses within double-network supramolecular hybrid hydrogels tailored to mimic the dynamic molecular nature of hyaline cartilage. To this end, we infused noncovalent host-guest polyrotaxanes, by blending α-cyclodextrins as host molecules and polyethylene glycol as guests, into a gelatin-based covalent matrix, thereby enhancing its dynamic characteristics. Subsequently, chondrocytes were seeded into these hydrogels to systematically probe the effects of two concentrations of the introduced polyrotaxanes (instilling different levels of supramolecular dynamism in the hydrogel systems) on the cellular responsiveness. Our findings unveiled an augmented level of cellular mechanosensitivity for supramolecular hydrogels compared to pure covalent-based systems. This is demonstrated by an increased mRNA expression of ion channels (TREK1, TRPV4, and PIEZO1), signaling molecules (SOX9) and matrix-remodeling enzymes (LOXL2). Such outcomes were further elevated upon external application of biomimetic thermomechanical loading, which brought a stark increase in the accumulation of sulfated glycosaminoglycans and collagen. Overall, we found that matrix adaptability plays a pivotal role in modulating chondrocyte responses within double-network supramolecular hydrogels. These findings hold the potential for advancing cartilage engineering within load-bearing joints.


Assuntos
Condrócitos , Rotaxanos , Condrócitos/metabolismo , Rotaxanos/farmacologia , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Simulação de Dinâmica Molecular , Cartilagem/metabolismo , Engenharia Tecidual , Células Cultivadas
6.
Int J Radiat Biol ; 100(2): 296-315, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37734005

RESUMO

PURPOSE: The North-western Himalayan region requires unique varietal traits for the cultivation and quality of grain produced. Wheat varieties released for this zone in the past remained very popular among the farmers. However, with the passage of time certain traits such as the appearance of pathogenic rust races and grain softness have become threat to the fecundity of these genotypes and needs immediate improvement in this region. Mutation breeding facilitates improving one or two traits of a popular cultivar and to generate variability for most of plant traits upon which selection can be imposed. The purpose of this study is to evaluate the mutagenic sensitivity, effectiveness and efficiency of physical and chemical mutagens in four bread wheat varieties with differential grain texture. MATERIALS AND METHODS: Four bread wheat varieties; HS 490, HPW 89, HPW 360 and HPW 251 were irradiated using six doses of gamma rays (γ-rays) ranging from 175 to 300 Gy; Co60 source (BARC, Mumbai, India) and six doses of ethyl methane sulfonate (EMS) ranging from 0.3 to 1.3%; EMS (Sigma-Aldrich, Bangalore, India) to assess their mutation sensitivity, effectiveness, efficiency and spectrum of induced macro-mutations in M1 and M2 generation. RESULTS: Based on mutagen sensitivity tests, both gamma rays and ethyl methane sulfonate had similar effects as the doses/concentrations increased in all four varieties. Ethyl methane sulfonate had a discernible effect on seed germination and growth parameters as compared to gamma irradiated treatments. Pollens viability studies confirmed the differential effects of both mutagens on germination and plant survivability. The LD50 and LC50 values varied between 290-315 Gy for gamma rays and 0.90-1.35% for EMS under controlled laboratory conditions, however, the range substantially differs for gamma rays (240-290 Gy) and for EMS (0.50-1.1%) under field conditions, irrespective of the variety treated. The frequency of chlorophyll mutations was low and showed a linear correlation with the doses/concentrations of the mutagen. A total of 117 putative mutants with desirable agro-morphological characteristics were also isolated. Mutagenic effectiveness and efficiency results showed that gamma irradiation doses of 250-300 Gy and ethyl methane sulfonate of 0.7-1.3% were most potent for an effective mutation breeding programme in wheat crop. CONCLUSIONS: It was found that semi-hard textured varieties showed higher sensitivity to chemical mutagens as compared to soft-textured varieties. Gamma irradiation dose of 250-300 Gy and ethyl methane sulfonate concentration of 0.7-1.3% were found to be most effective and efficient across four bread wheat varieties and can be used in large scale mutagenesis programmes.


Assuntos
Pão , Triticum , Triticum/genética , Raios gama , Índia , Metanossulfonato de Etila/farmacologia , Mutagênicos/farmacologia , Metano
7.
iScience ; 26(12): 108519, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38125014

RESUMO

Cartilage degeneration, typically viewed as an irreversible, vicious cycle, sees a significant reduction in two essential biophysical cues: the well-established hydrostatic pressure (HP) and the recently discovered transient temperature increase. Our study aimed to evaluate the combined influence of these cues on maintaining cartilage homeostasis. To achieve this, we developed a customized bioreactor, designed to mimic the specific hydrostatic pressure and transient thermal increase experienced during human knee physiological activities. This system enabled us to investigate the response of human 3D-cultured chondrocytes and human cartilage explants to either isolated or combined hydrostatic pressure and thermal stimuli. Our study found that chondroinduction (SOX9, aggrecan, and sulfated glycosaminoglycan) and chondroprotection (HSP70) reached maximum expression levels when hydrostatic pressure and transient thermal increase acted in tandem, underscoring the critical role of these combined cues in preserving cartilage homeostasis. These findings led us to propose a refined model of the vicious cycle of cartilage degeneration.

8.
ACS Appl Mater Interfaces ; 15(43): 50095-50105, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37871154

RESUMO

Tissue wounds are a significant challenge for the healthcare system, affecting millions globally. Current methods like suturing and stapling have limitations as they inadequately cover the wound, fail to prevent fluid leakage, and increase the risk of infection. Effective solutions for diverse wound conditions are still lacking. Adhesive hydrogels, on the other hand, can be a potential alternative for wound care. They offer benefits such as firm sealing without leakage, easy and rapid application, and the provision of mechanical support and flexibility. However, the in vivo durability of hydrogels is often compromised by excessive swelling and unforeseen degradation, which limits their widespread use. In this study, we addressed the durability issues of the adhesive hydrogels by incorporating acrylamide polyethylene glycol N-hydroxysuccinimide (PEG-NHS) moieties (max. 2 wt %) into hydrogels based on hydroxy ethyl acrylamide (HEAam). The results showed that the addition of PEG-NHS significantly enhanced the adhesion performance, achieving up to 2-fold improvement on various soft tissues including skin, trachea, heart, lung, liver, and kidney. We further observed that the addition of PEG-NHS into the adhesive hydrogel network improved their intrinsic mechanical properties. The tensile modulus of these hydrogels increased up to 5-fold, while the swelling ratio decreased up to 2-fold in various media. These hydrogels also exhibited improved durability under the enzymatic and oxidative biodegradation induced conditions without causing any toxicity to the cells. To evaluate its potential for clinical applications, we used PEG-NHS based hydrogels to address tracheomalacia, a condition characterized by inadequate mechanical support of the airway due to weak/malacic cartilage rings. Ex vivo study confirmed that the addition of PEG-NHS to the hydrogel network prevented approximately 90% of airway collapse compared to the case without PEG-NHS. Overall, this study offers a promising approach to enhance the durability of adhesive hydrogels by the addition of PEG-NHS, thereby improving their overall performances for various biomedical applications.


Assuntos
Hidrogéis , Polietilenoglicóis , Polietilenoglicóis/farmacologia , Hidrogéis/farmacologia , Adesivos , Medicina Estatal , Materiais Biocompatíveis , Acrilamidas
9.
iScience ; 26(8): 107491, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37599834

RESUMO

Chondrocytes respond to various biophysical cues, including oxygen tension, transient thermal signals, and mechanical stimuli. However, understanding how these factors interact to establish a unique regulatory microenvironment for chondrocyte function remains unclear. Herein, we explore these interactions using a joint-simulating bioreactor that independently controls the culture's oxygen concentration, evolution of temperature, and mechanical loading. Our analysis revealed significant coupling between these signals, resulting in a remarkable ∼14-fold increase in collagen type II (COL2a) and aggrecan (ACAN) mRNA expression. Furthermore, dynamic thermomechanical stimulation enhanced glycosaminoglycan and COL2a protein synthesis, with the magnitude of the biosynthetic changes being oxygen dependent. Additionally, our mechanistic study highlighted the crucial role of SRY-box transcription factor 9 (SOX9) as a major regulator of chondrogenic response, specifically expressed in response to combined biophysical signals. These findings illuminate the integration of various mechanobiological cues by chondrocytes and provide valuable insights for improving the extracellular matrix content in cartilage-engineered constructs.

10.
J Chromatogr Sci ; 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592890

RESUMO

In this study, we investigated a new, simple, sensitive, selective and precise high-performance thin-layer chromatography (HPTLC) fingerprint and quantitative estimation method for the routine analysis of curcumin in Curcuma species viz. Curcuma amada, Curcuma caesia, Curcuma longa and Curcuma zedoaria. Linear ascending development was carried out in a twin-trough glass chamber saturated with toluene:acetic acid (4:1; v/v with 20 minutes of saturation). The plate was dried and analyzed by CAMAG TLC scanner III at white light and 366 nm. The system was found to give compact spots for curcumin (Rf 0.42). The relationship between the concentration of standard solutions and the peak response is linear within the concentration range of 10-70 ng/spot for curcumin. In result, curcumin was not detected in any of C. caesia extracts. The percentage of curcumin was found between 0.042 and 4.908 (%w/w) in different Curcuma species obtained by two different extraction methods viz. Soxhlet and sonication, respectively. Further, extraction via Soxhlet method is most suitable method to get higher curcumin content from rhizomes. The proposed HPTLC method may be use for routine quality testing and quantification of curcumin in Curcuma samples.

11.
iScience ; 26(7): 107168, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37456833

RESUMO

Tracheomalacia (TM) is a condition characterized by a weak tracheal cartilage and/or muscle, resulting in excessive collapse of the airway in the newborns. Current treatments including tracheal reconstruction, tracheoplasty, endo- and extra-luminal stents have limitations. To address these limitations, this work proposes a new strategy by wrapping an adhesive hydrogel patch around a malacic trachea. Through a numerical model, first it was demonstrated that a hydrogel patch with sufficient mechanical and adhesion strength can preserve the trachea's physiological shape. Accordingly, a new hydrogel providing robust adhesion on wet tracheal surfaces was synthesized employing the hydroxyethyl acrylamide (HEAam) and polyethylene glycol methacrylate (PEGDMA) as main polymer network and crosslinker, respectively. Ex vivo experiments revealed that the adhesive hydrogel patches can restrain the collapsing of malacic trachea under negative pressure. This study may open the possibility of using an adhesive hydrogel as a new approach in the difficult clinical situation of tracheomalacia.

12.
PNAS Nexus ; 2(1): pgac297, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36712931

RESUMO

Alopecia areata is a chronic hair loss disorder that involves autoimmune disruption of hair follicles by CD8+  T cells. Most patients present with patchy hair loss on the scalp that improves spontaneously or with topical and intralesional steroids, topical minoxidil, or topical immunotherapy. However, recurrence of hair loss is common, and patients with extensive disease may require treatment with oral corticosteroids or oral Janus kinase (JAK) inhibitors, both of which may cause systemic toxicities with long-term use. Itaconate is an endogenous molecule synthesized in macrophages that exerts anti-inflammatory effects. To investigate the use of itaconate derivatives for treating alopecia areata, we designed a prodrug of 4-methyl itaconate (4-MI), termed SCD-153, with increased lipophilicity compared to 4-MI (CLogP 1.159 vs. 0.1442) to enhance skin and cell penetration. Topical SCD-153 formed 4-MI upon penetrating the stratum corneum in C57BL/6 mice and showed low systemic absorption. When added to human epidermal keratinocytes stimulated with polyinosinic-polycytidylic acid (poly I:C) or interferon (IFN)γ, SCD-153 significantly attenuated poly I:C-induced interleukin (IL)-6, Toll-like receptor 3, IL-1ß, and IFNß expression, as well as IFNγ-induced IL-6 expression. Topical application of SCD-153 to C57BL/6 mice in the resting (telogen) phase of the hair cycle induced significant hair growth that was statistically superior to vehicle (dimethyl sulfoxide), the less cell-permeable itaconate analogues 4-MI and dimethyl itaconate, and the JAK inhibitor tofacitinib. Our results suggest that SCD-153 is a promising topical candidate for treating alopecia areata.

13.
Crit Rev Food Sci Nutr ; 63(16): 2749-2772, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34590507

RESUMO

Neurodegenerative disorders occur when nerve cells in the brain or peripheral nervous system partial or complete fail in their functions and sometimes even die due to some injuries or aging. Neurodegenerative disorders such as Alzheimer's Disease (AD) and Parkinson's Disease (PD), have been majorly resulted due to degeneration of neurons and neuroinflammation progressively. There are many similarities that correlates both AD and PD on a cellular and sub-cellular level. Therefore, a hope for therapeutic advancement for simultaneous upgradation in both the diseases are directly depending on the discovery of common mechanism at molecular and cellular level. Recent and past evidences from scientific literature supporting the efficacy of plants flavonoids in treatment and protection of both AD and PD. Further, dietary flavones, specially Heptamethoxyflavone, Kaempferitrin, Vitexin and Amentoflavone gains recently much more attention for producing many health beneficiary effects including neuroprotection. Despite of these evidence a detailed updated overview of neuroprotective effects against both AD and PD by Heptamethoxyflavone, Kaempferitrin, Vitexin and Amentoflavone are still missing. In this context several published studies were assessed by using various online electronic search engines/databases to meet the objective from 1981 to 2021 (Approx. 224). Therefore, present review was designed to deliver the detailed description on these flavones including therapeutic benefits in AD, PD and other CNS complications with critical analysis on underlying mechanisms.


Assuntos
Doença de Alzheimer , Flavonas , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico , Flavonas/farmacologia , Flavonas/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico
14.
Biomacromolecules ; 23(12): 5007-5017, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36379034

RESUMO

The surgical treatments of injured soft tissues lead to further injury due to the use of sutures or the surgical routes, which need to be large enough to insert biomaterials for repair. In contrast, the use of low viscosity photopolymerizable hydrogels that can be inserted with thin needles represents a less traumatic treatment and would therefore reduce the severity of iatrogenic injury. However, the delivery of light to solidify the inserted hydrogel precursor requires a direct access to it, which is mostly invasive. To circumvent this limitation, we investigate the approach of curing the hydrogel located behind biological tissues by sending near-infrared (NIR) light through the latter, as this spectral region has the largest transmittance in biological tissues. Upconverting nanoparticles (UCNPs) are incorporated in the hydrogel precursor to convert NIR transmitted through the tissues into blue light to trigger the photopolymerization. We investigated the photopolymerization process of an adhesive hydrogel placed behind a soft tissue. Bulk polymerization was achieved with local radiation of the adhesive hydrogel through a focused light system. Thus, unlike the common methods for uniform illumination, adhesion formation was achieved with local micrometer-sized radiation of the bulky hydrogel through a gradient photopolymerization phenomenon. Nanoindentation and upright microscope analysis confirmed that the proposed approach for indirect curing of hydrogels below the tissue is a gradient photopolymerization phenomenon. Moreover, we found that the hydrogel mechanical and adhesive properties can be modulated by playing with different parameters of the system such as the NIR light power and the UCNP concentration. The proposed photopolymerization of adhesive hydrogels below the tissue opens the prospect of a minimally invasive surgical treatment of injured soft tissues.


Assuntos
Hidrogéis , Nanopartículas , Adesivos , Materiais Biocompatíveis , Polimerização
15.
Phytomed Plus ; 2(1): 100206, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35403088

RESUMO

Background: Glycyrrhiza glabra L. (G. glabra) commonly known as liquorice is one of the highly exploited and utilized medicinal plant of the world. Since ancient times liquorice is considered as an auspicious and valuable traditional medicine across the world for treatment of various ailments. Method: Several electronic online scientific databases such as Science Direct, PubMed, Scopus, Scifinder, Google Scholar, online books and reports were assessed for collecting information. All the collected information was classified into different sections to meet the objective of the paper. Results: The electronic database search yielded 3908 articles from different countries. Out of them one ninety-eight articles published between 1956 and 2021 were included, corresponding to all detailed review on G. glabra and research on anti-inflammatories, antivirals and immunomodulatory through pre-clinical and clinical models. From all selective area of studies on G. glabra and its bioactive components it was established (including molecular mechanisms) as a suitable remedy as per the current requirement of pandemic situation arise through respiratory tract infection. Conclusion: Different relevant studies have been thoroughly reviewed to gain an insight on utility of liquorice and its bioactive constituents for anti-inflammatories, antivirals and immunomodulatory effects with special emphasized for prevention and treatment of COVID-19 infection with possible mechanism of action at molecular level. Proposed directions for future research are also outlined to encourage researchers to find out various mechanistic targets and useful value added products of liquorice in future investigations.

16.
Molecules ; 27(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35408595

RESUMO

The encapsulation of proteins into core-shell structures is a widely utilised strategy for controlling protein stability, delivery and release. Despite the recognised utility of these microstructures, however, core-shell fabrication routes are often too costly or poorly scalable to allow for industrial translation. Furthermore, many scalable routes rely upon emulsion-techniques implicating denaturing or environmentally harmful organic solvents. Herein, we investigate core-shell protein encapsulation through single-feed, aqueous spray drying: a cheap, industrially ubiquitous particle-formation technology in the absence of organic solvents. We show that an excipient's preference for the surface of the spray dried particle is well-predicted by its hydrodynamic diameter (Dh) under relevant feed buffer conditions (pH and ionic strength) and that the predictive power of Dh is improved when measured at the spray dryer outlet temperature compared to room temperature (R2 = 0.64 vs. 0.59). Lastly, we leverage these findings to propose an adaptable design framework for fabricating core-shell protein encapsulates by single-feed aqueous spray drying.


Assuntos
Proteínas , Água , Emulsões , Tamanho da Partícula , Pós , Solventes , Temperatura , Água/química
17.
Phys Chem Chem Phys ; 22(26): 14976-14982, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32588846

RESUMO

Machine learning is a valuable tool in the development of chemical technologies but its applications into supramolecular chemistry have been limited. Here, the utility of kernel-based support vector machine learning using density functional theory calculations as training data is evaluated when used to predict equilibrium binding coefficients of small molecules with cucurbit[7]uril (CB[7]). We find that utilising SVMs may confer some predictive ability. This algorithm was then used to predict the binding of drugs TAK-580 and selumetinib. The algorithm did predict strong binding for TAK-580 and poor binding for selumetinib, and these results were experimentally validated. It was discovered that the larger homologue cucurbit[8]uril (CB[8]) is partial to selumetinib, suggesting an opportunity for tunable release by introducing different concentrations of CB[7] or CB[8] into a hydrogel depot. We qualitatively demonstrated that these drugs may have utility in combination against gliomas. Finally, mass transfer simulations show CB[7] can independently tune the release of TAK-580 without affecting selumetinib. This work gives specific evidence that a machine learning approach to recognition of small molecules by macrocycles has merit and reinforces the view that machine learning may prove valuable in the development of drug delivery systems and supramolecular chemistry more broadly.


Assuntos
Benzimidazóis/química , Hidrocarbonetos Aromáticos com Pontes/química , Compostos Heterocíclicos com 3 Anéis/química , Imidazóis/química , Teoria da Densidade Funcional , Modelos Químicos , Máquina de Vetores de Suporte
18.
Chem Commun (Camb) ; 56(35): 4828-4831, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32236208

RESUMO

A new multi-photoactive γ-cyclodextrin substituted bis(acyl)phosphane oxide derivative (BAPO-γ-CyD) was successfully prepared via a convergent synthesis using a phospha-Michael-addition, as confirmed by 1H-, 13C-, 31P-NMR and IR spectroscopy and mass spectrometry. Kinetic studies carried out by photo-DSC and photo-rheology demonstrated its outstanding efficiency as a photoinitiator for free-radical polymerization. Remarkably, it is found that BAPO-γ-CyD also acts as a crosslinking agent to convert monofunctional methacrylate monomers into self-standing thermosetting networks with extensive swelling capability in water.

19.
J Chem Inf Model ; 60(4): 2115-2125, 2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32105472

RESUMO

The aim of this work is to describe the molecular inclusion of chlordecone with α-, ß-, and γ-cyclodextrin in aqueous solution using quantum mechanics. The guest-host complexes of chlordecone and cyclodextrins are modeled in aqueous solution using the multiple minima hypersurface methodology with a PM6-D3H4X semiempirical Hamiltonian, and the lowest energy minima obtained are reoptimized using the M06-2X density functional and the intermolecular interactions described using quantum theory of atoms in molecules (QTAIM). The studied complexes are classified according to the degree of inclusion, namely, total occlusion, partial occlusion, and external interaction. More stable complexes are obtained when γ-CD is used as the host molecule. The interactions characterized through QTAIM analysis are all of electrostatic nature, predominantly of dispersive type. In this work, a method based on the counterpoise correction is also discussed to mitigate the basis set superposition error in density functional theory calculations when using an implicit solvation model.


Assuntos
Clordecona , Ciclodextrinas , Teoria Quântica , Eletricidade Estática , Água
20.
ACS Macro Lett ; 8(12): 1629-1634, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-35619388

RESUMO

The scalable production of uniformly distributed graphene (GR)-based composite materials remains a sizable challenge. While GR-polymer nanocomposites can be manufactured at a large scale, processing limitations result in poor control over the homogeneity of hydrophobic GR sheets in the matrices. Such processes often result in difficulties controlling stability and avoiding aggregation, therefore eliminating benefits that might have otherwise arisen from the nanoscopic dimensions of GR. Here, we report an exfoliated and stabilized GR dispersion in water. Cucurbit[8]uril (CB[8])-mediated host-guest chemistry was used to obtain supramolecular hydrogels consisting of uniformly distributed GR and guest-functionalized macromolecules. The obtained GR hydrogels show superior bioelectrical properties over identical systems produced without CB[8]. Utilizing such supramolecular interactions with biologically derived macromolecules is a promising approach to stabilize graphene in water and avoid oxidative chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...