Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 93: 30-40, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32446457

RESUMO

Peroxymonosulfate (PMS) decomposition, hydroxyl radical (•OH) generation, and acetaminophen (ACT) degradation by the Co/PMS system using homogeneous (dissolved cobalt) and heterogeneous (suspended Co3O4) cobalt were assessed. For the homogeneous process, >99% PMS decomposition was observed and 10 mmol/L of •OH generation was produced using 5 mmol/L of PMS and different dissolved cobalt concentrations after 30 min. A dissolved cobalt concentration of 0.2 mmol/L was used to achieve >99% ACT degradation using the homogeneous process. For the heterogeneous process, 60% PMS decomposition and negligible •OH generation were observed for 5 mmol/L of the initial PMS concentration using 0.1 and 0.2 g/L of Co3O4. Degradation of ACT greater than 80% was achieved for all experimental runs using 5 mmol/L of the initial PMS concentration independently of the initial Co3O4 load used. For the heterogeneous process, the best experimental conditions for ACT degradation were found to be 3 mmol/L of PMS and 0.2 g/L of Co3O4, for which >99% ACT degradation was achieved after 10 min. Because negligible •OH was produced by the Co3O4/PMS process, a second-order kinetic model was proposed for sulfur-based free radical production to allow fair comparison between homogeneous and heterogeneous processes. Using the kinetic data and the reaction by-products identified, a mechanistic pathway for ACT degradation is suggested.


Assuntos
Acetaminofen , Peróxidos , Cobalto , Cinética
2.
J Photochem Photobiol A Chem ; 376: 73-79, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31333319

RESUMO

The structural dependence of the photo-physical properties of substituted 2,3-distyryl (23DSI) indoles were studied using several spectroscopic techniques including steady-state UV-VIS spectroscopy, steady-state fluorescence spectroscopy, steady-state excitation spectroscopy, time correlated single photon counting (TCSPC) spectroscopy, and time-resolved fluorescence upconversion spectroscopy (TRFLS). Each of 23DSI derivatives investigated showed distinct fluorescence emission and UV-VIS spectra, indicating strong structural dependence of the emission and the excitation. The UV-VIS spectra of the 23DSI derivatives showed three main identical absorption bands with minor deviations in the absorbance caused by substituent groups on the distyryl rings. The time-resolved fluorescence up-conversion studies indicated that the fluorescence undergoes a mono-exponential decay whereas the calculated fluorescence lifetime showed relatively short fluorescence lifetimes of approximately 1 ns. All of the 23DSI derivatives showed two-photon absorption upon direct excitation of 1.6 W laser pulses at 800 nm. These studies suggest that the substituents, attached to distyryl core, are capable of boosting or hindering fluorescence intensities by distorting the π-conjugation of the 23DSI molecule. Our studies showed that 23DSI (p-F) has the highest fluorescence emission quantum yield. Theoretical calculations for the ground state of 23DSI derivatives confirmed differences in electron densities in 23DSI derivatives in the presence of different substituent attachments. The excellent fluorescence emission, high fluorescence quantum yield and two-photon absorption properties of these 23DSI molecules make them attractive candidates for potential applications in the fields of biological imaging, biomedicine, fluorescent probes, and photodynamic inactivation (PDI). B. subtilis samples, treated with micro molar solutions of 23DSI (p-OCH3) and 23DSI (p-CH3), showed very effective photodynamic inactivation (PDI) upon irradiation with white light.

3.
Bioorg Med Chem Lett ; 28(10): 1879-1886, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29673980

RESUMO

Compounds based on the 2,3-distyrylindole scaffold were found to exhibit bactericidal properties upon irradiation with white light. At the concentration of 1 µM, the lead compound 1 completely (ca. 109 CFU/mL) eradicated such Gram-positive organisms as S. aureus (MRSA, MSSA), E. faecalis (VRE), S. pyogenes and S. mutans when irradiated with white light for 2 min. At the concentration of 5 µM and in the presence of polymyxin E at non-bactericidal 1.25 µg/mL concentration, 1 also showed a 7-log to 9-log reductions in bacterial counts of such Gram-negative organisms as multi-drug resistant (MDR) A. baumannii, MDR P. aeruginosa, E. coli and Klebsiella pneumoniae (CRE: KPC and NDM-1), also when irradiated with white light for 2 min. The structure-activity relationship studies revealed that unsubstituted at benzene rings 2,3-distyrylindole 2 was most potent and gave a 5-order of magnitude eradication of a MRSA strain at the concentration of 30 nM upon irradiation with white light. Initial mechanistic experiments revealed the disruption of bacterial cell membrane, but indicated that singlet oxygen production, which is commonly associated with photodynamic therapy, may not play a role in the bactericidal effects of the 2,3-distyrylindoles.


Assuntos
Antibacterianos/química , Indóis/química , Antibacterianos/farmacologia , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Indóis/farmacologia , Luz , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Oxigênio Singlete/metabolismo , Relação Estrutura-Atividade
4.
J Phys Chem A ; 122(4): 937-945, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29303582

RESUMO

Optical properties and fluorescence decay dynamics of a photoactive indole based antibacterial chromophore system, 2,3-distyrylindole (23DSI), were investigated using various spectroscopic characterization techniques. Experimental studies were done by utilizing steady-state UV-vis spectroscopy, steady-state fluorescence spectroscopy, time-resolved fluorescence upconversion spectroscopy, and time-correlated single-photon counting spectroscopy. Our studies show that the 23DSI molecule has a multiphoton absorption property as indicated by two- and three-photon absorption in the both the solution and the solid phases. The ultrafast time-resolved fluorescence upconversion studies show that this molecule undergoes a fast decay process with an average time constant of 34 ps, a single exponential decay, and an average fluorescence lifetime of 1 ns. The compound 23DSI did not show any signs of singlet oxygen production. The density functional theory (DFT) calculations showed that the 23DSI molecule has conjugated electron densities that are responsible for multiphoton absorption. The chlorine-substituted styryl groups, attached to the central indole ring facilitate the excellent electron delocalization within the molecule. This optimal electron delocalization, combined with the good electron conjugation in the 23DSI molecule is important for efficient multiphoton absorption and is in excellent agreement with experimental observations. Both the optical spectrum and emission spectrum using DFT calculations are also surprisingly well matched with the experimentally measured UV-vis spectrum and the emission spectrum, respectively. Combined experimental and theoretical studies suggest that excited electrons initially relax to the singlet state (S1) by internal conversion (IC) and subsequently relax back to their ground state by emitting absorbed energy as fluorescence emission. The outstanding multiphoton absorption capabilities of this 23DSI molecule support its potential application in both biological imaging and photodynamic inactivation (PDI).


Assuntos
Antibacterianos/química , Fluorescência , Processos Fotoquímicos , Teoria Quântica , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
5.
J Am Chem Soc ; 128(34): 10988-9, 2006 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-16925392

RESUMO

A multifunctional ligand-coated nanoparticle system containing approximately 2000 highly two-photon absorptive chromophores has been investigated by means of steady-state and femtosecond time-resolved spectroscopy. This system with a high local concentration of chromophores showed remarkably low self-quenching and a high fluorescence quantum yield, which is important for a variety of two-photon sensing and imaging applications. We have observed evidence for ultrafast energy migration in these chromophore shell-metal nanoparticle systems. Time-resolved experiments also showed non-zero residual anisotropy after the initial fast decay, which can be interpreted as due to the formation of the specific domains on the metal surfaces. This investigation opens new avenues toward the development of multi-chromophoric efficient TPA fluorescence sensing/imaging systems with large numbers of chromophores per one metal particle nanoparticle.

6.
J Am Chem Soc ; 125(32): 9562-3, 2003 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-12904002

RESUMO

The mechanism of energy transport in branching structures is suggestively related to the geometry of the multichromophore architecture. In organic conjugated dendrimers, both incoherent (hopping) and coherent energy transfer processes have been observed from different dendritic architectures with different building blocks. In this communication, we report the investigation of three fundamental dendritic architectures (G0) with the same attached chromophores, but with different core atoms, C, N, and P. The synthesis of a phosphorus-containing G0 system with distyrylbenzene chromophores is provided. These three systems provide a comparison by which the relative interaction of branching chromophores can be compared on the basis of their different branching centers. Ultrafast fluorescence anisotropy measurements provide a dual measure of the geometry of the chromophores around the different central units as well as the strength of the interactions among chromophores. The nitrogen-cored system appeared to have both the strongest coupling of chromophore excitation as well as the most planar geometry of the three. Interestingly, the phosphorus system appeared to have the least planar geometry, and its interaction strength was found to be stronger than that observed for the carbon system. These results provide a comparison of the energy migration dynamics of the most common and new dendritic architectures with applications for light emission and light harvesting.

7.
J Am Chem Soc ; 125(18): 5258-9, 2003 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-12720421

RESUMO

To understand the mode of energy transport in branched dendritic macromolecules, the optical excitation of a dendritic core (A-DSB) at low temperature (4.2 K) was investigated. Fluorescence depolarization measurements were utilized to probe the energy-transfer processes in the branching center at several different temperatures. We found that the anisotropy decay shows an interesting trend at low temperature where depolarization times decreased and the residual anisotropy value also decreased with decreasing temperature. The very fast anisotropy decay suggests a coherent mechanism of energy transport in these systems at low temperature. The contribution of inhomogeneous broadening is suggested as an important factor in the temperature dependence of the anisotropy decay and residual value. The change in inhomogeneous linewidth is responsible for this type of anisotropy behavior.

8.
J Am Chem Soc ; 124(23): 6520-1, 2002 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-12047157

RESUMO

The search for a model that can be used to describe the optical excitation migration in dendrimers has attracted great attention. In most cases in a dendrimer the conjugation is disrupted at the branching point; however, the excitation is delocalized. The strength of interactions among neighboring chromophores plays a key role in determining the energy migration mechanism. Conversely, having many identical chromophores held tightly together in an ordered macromolecular architecture will allow for many dipoles to be accessible for optical excitation. Therefore, the relative orientation of dipoles will be important in determining the mechanism of energy migration. Here we report the synthesis and photo-physical investigation of triarylamine-based dendrimers. Two important synthetic steps were utilized in the synthesis. First, we employed diphenylmethyl protective groups on the amines to assist in deprotective hydrogenolysis of the larger structures. Second, highly active catalysts for formation of both di- and triarylamines that are based on a 1:1 ratio of P(t-Bu)3 and Pd(dba)2 improved reaction yields of the C-N bond formation and decreased reaction times The energy migration processes in the dendrimers were investigated utilizing ultrafast time-resolved fluorescence anisotropy measurements. The fluorescence anisotropy of all three dendrimers decayed to a residual value within approximately 100 fs. This fluorescence anisotropy decay showed a general trend in decreasing with increasing dendrimer generation. The residual anisotropy value also showed a gradual decrease with an increase in the dendrimer generation. This fast energy depolarization is discussed through a coherent excitonic mechanism among dipoles oriented in different directions. We believe that the formation of coherent domains leads to fast energy migration extending over a large part of the dendrimer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...