Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sports Med Open ; 9(1): 65, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37523028

RESUMO

BACKGROUND: Research has shown that ingesting 0.3 g·kg-1 body mass sodium bicarbonate (NaHCO3) can improve time-to-exhaustion (TTE) cycling performance, but the influence of psychophysiological mechanisms on ergogenic effects is not yet understood. OBJECTIVE: This study retrospectively examined whether changes in TTE cycling performance are mediated by positive expectations of receiving NaHCO3 and/or the decline in blood bicarbonate during exercise. METHODS: In a randomised, crossover, counterbalanced, double-blind, placebo-controlled design, 12 recreationally trained cyclists (maximal oxygen consumption, 54.4 ± 5.7 mL·kg·min-1) performed four TTE cycling tests 90 min after consuming: (1) 0.3 g·kg-1 body mass NaHCO3 in 5 mL·kg-1 body mass solution, (2) 0.03 g·kg-1 body mass sodium chloride in solution (placebo), (3) 0.3 g·kg-1 body mass NaHCO3 in capsules and (4) cornflour in capsules (placebo). Prior to exercise, participants rated on 1-5 Likert type scales how much they expected the treatment they believe had been given would improve performance. Capillary blood samples were measured for acid-base balance at baseline, pre-exercise and post-exercise. RESULTS: Administering NaHCO3 in solution and capsules improved TTE compared with their respective placebos (solution: 27.0 ± 21.9 s, p = 0.001; capsules: 23.0 ± 28.1 s, p = 0.016). Compared to capsules, NaHCO3 administered via solution resulted in a higher expectancy about the benefits on TTE cycling performance (Median: 3.5 vs. 2.5, Z = 2.135, p = 0.033). Decline in blood bicarbonate during exercise was higher for NaHCO3 given in solution compared to capsules (2.7 ± 2.1 mmol·L-1, p = 0.001). Mediation analyses showed that improvements in TTE cycling were indirectly related to expectancy and decline in blood bicarbonate when NaHCO3 was administered in solution but not capsules. CONCLUSIONS: Participants' higher expectations when NaHCO3 is administered in solution could result in them exerting themselves harder during TTE cycling, which subsequently leads to a greater decline in blood bicarbonate and larger improvements in performance. KEY POINTS: Ingesting 0.3 g·kg-1 body mass sodium bicarbonate in solution and capsules improved time-to-exhaustion cycling performance Positive expectancy about the benefits of sodium bicarbonate and decline in blood bicarbonate were higher when sodium bicarbonate was administered in solution compared with capsules Improvements in time-to-exhaustion cycling performance for sodium bicarbonate administered in solution were related to expectancy and the enhanced extracellular buffering response.

2.
J Int Soc Sports Nutr ; 14: 35, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28919844

RESUMO

Specific guidelines that aim to facilitate the recovery of soccer players from the demands of training and a congested fixture schedule are lacking; especially in relation to evidence-based nutritional recommendations. The importance of repeated high level performance and injury avoidance while addressing the challenges of fixture scheduling, travel to away venues, and training commitments requires a strategic and practically feasible method of implementing specific nutritional strategies. Here we present evidence-based guidelines regarding nutritional recovery strategies within the context of soccer. An emphasis is placed on providing practically applicable guidelines for facilitation of recovery when multiple matches are played within a short period of time (i.e. 48 h). Following match-play, the restoration of liver and muscle glycogen stores (via consumption of ~1.2 g⋅kg-1⋅h-1 of carbohydrate) and augmentation of protein synthesis (via ~40 g of protein) should be prioritised in the first 20 min of recovery. Daily intakes of 6-10 g⋅kg-1 body mass of carbohydrate are recommended when limited time separates repeated matches while daily protein intakes of >1.5 g⋅kg-1 body mass should be targeted; possibly in the form of multiple smaller feedings (e.g., 6 × 20-40 g). At least 150% of the body mass lost during exercise should be consumed within 1 h and electrolytes added such that fluid losses are ameliorated. Strategic use of protein, leucine, creatine, polyphenols and omega-3 supplements could also offer practical means of enhancing post-match recovery.


Assuntos
Desempenho Atlético/fisiologia , Carboidratos da Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Eletrólitos/administração & dosagem , Ingestão de Energia/efeitos dos fármacos , Ingestão de Energia/fisiologia , Futebol/fisiologia , Fenômenos Fisiológicos da Nutrição Esportiva , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Prática Clínica Baseada em Evidências , Hidratação , Glicogênio/sangue , Humanos , Política Nutricional , Recuperação de Função Fisiológica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...