Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(10): 100804, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37739386

RESUMO

Counting the microwave photons emitted by an ensemble of electron spins when they relax radiatively has recently been proposed as a sensitive method for electron paramagnetic resonance spectroscopy, enabled by the development of operational single microwave photon detectors at millikelvin temperature. Here, we report the detection of spin echoes in the spin fluorescence signal. The echo manifests itself as a coherent modulation of the number of photons spontaneously emitted after a π/2_{X}-τ-π_{Y}-τ-π/2_{Φ} sequence, dependent on the relative phase Φ. We demonstrate experimentally this detection method using an ensemble of Er^{3+} ion spins in a scheelite crystal of CaWO_{4}. We use fluorescence-detected echoes to measure the erbium spin coherence time, as well as the echo envelope modulation due to the coupling to the ^{183}W nuclear spins surrounding each ion. We finally compare the signal-to-noise ratio of inductively detected and fluorescence-detected echoes, and show that it is larger with the fluorescence method.

2.
Nature ; 619(7969): 276-281, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438594

RESUMO

Electron spin resonance spectroscopy is the method of choice for characterizing paramagnetic impurities, with applications ranging from chemistry to quantum computing1,2, but it gives access only to ensemble-averaged quantities owing to its limited signal-to-noise ratio. Single-electron spin sensitivity has, however, been reached using spin-dependent photoluminescence3-5, transport measurements6-9 and scanning-probe techniques10-12. These methods are system-specific or sensitive only in a small detection volume13,14, so that practical single-spin detection remains an open challenge. Here, we demonstrate single-electron magnetic resonance by spin fluorescence detection15, using a microwave photon counter at millikelvin temperatures16. We detect individual paramagnetic erbium ions in a scheelite crystal coupled to a high-quality-factor planar superconducting resonator to enhance their radiative decay rate17, with a signal-to-noise ratio of 1.9 in one second integration time. The fluorescence signal shows anti-bunching, proving that it comes from individual emitters. Coherence times up to 3 ms are measured, limited by the spin radiative lifetime. The method has the potential to be applied to arbitrary paramagnetic species with long enough non-radiative relaxation times, and allows single-spin detection in a volume as large as the resonator magnetic mode volume (approximately 10 µm3 in the present experiment), orders of magnitude larger than other single-spin detection techniques. As such, it may find applications in magnetic resonance and quantum computing.

3.
Bratisl Lek Listy ; 120(7): 527-531, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31602989

RESUMO

AIM: Carbon tetrachloride (CCl4) is an organic chemical that produces different tissue­damaging effects when ingested or inhaled. Present study aims to determine whether the application of exogenous melatonin, a neurohormone with numerous biological properties, can prevent disturbances in lung tissue antioxidative capacities and arginine metabolism, tissue inflammation and oxidative damage induced by exposure to CCl4 in rats. METHODS: The effects of melatonin on the changes occurring in rat lung tissue after an acute exposure to CCl4 were studied by monitoring alterations in antioxidant capacities, inflammatory parameters, parameters of arginine metabolism, and lipid and protein oxidative damage. RESULTS: The results indicated that melatonin prevents CCl4-induced lung damage by mitigating tissue antioxidant capacity and preventing nitric oxide production through a shift from nitric oxide synthase to arginase. Also, melatonin partially prevented tissue inflammation and molecules' oxidative modification seen after exposure to CCl4. CONCLUSIONS: The protective activity of melatonin can be attributed to its ability to scavenge both free radicals, as well as to its potential to increase tissue antioxidant capacity. The modulation of inflammatory response through both decrease in tissue inflammatory parameters and influence on arginine-nitric oxide metabolism might be an additional mechanism of action (Tab. 1, Fig. 2, Ref. 33).


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Antioxidantes/metabolismo , Melatonina/uso terapêutico , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Arginina/metabolismo , Tetracloreto de Carbono , Inflamação/tratamento farmacológico , Óxido Nítrico/metabolismo , Estresse Oxidativo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...