Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(15): 3543-3550, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37039518

RESUMO

The Trotterized Unitary Coupled Cluster Single and Double (UCCSD) ansatz has recently attracted interest due to its use in Variation Quantum Eigensolver (VQE) molecular simulations on quantum computers. However, when the size of molecules increases, UCCSD becomes less interesting as it cannot achieve sufficient accuracy. Including higher-order excitations is therefore mandatory to recover the UCC's missing correlation effects. Here, we extend the Trotterized UCC approach via the addition of (true) Triple T excitations introducing UCCSDT. We also include both spin and orbital symmetries. Indeed, in practice, the latter help to reduce unnecessary circuit excitations and thus accelerate the optimization process enabling researchers to tackle larger molecules. Our initial numerical tests (12-14 qubits) show that UCCSDT improves the overall accuracy by at least two orders of magnitude with respect to standard UCCSD. Overall, the UCCSDT ansatz is shown to reach chemical accuracy and to be competitive with the CCSD(T) gold-standard classical method of quantum chemistry.

2.
Sci Rep ; 12(1): 19882, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36400947

RESUMO

Majorana-zero-modes (MZMs) were predicted to exist as edge states of a physical system called the Kitaev chain. MZMs should host particles that are their own antiparticles and could be used as a basis for a qubit which is robust-to-noise. However, all attempts to prove their existence gave inconclusive results. Here, the Kitaev chain is exactly solved with a quantum computing methodology and properties of MZMs are probed by generating eigenstates of the Kitev Hamiltonian on 3 noisy qubits of a publicly available quantum computer. After an ontological elaboration I show that two eigenstates of the Kitaev Hamiltonian exhibit eight signatures attributed to MZMs. The results presented here are a most comprehensive set of validations of MZMs ever conducted in an actual physical system. Furthermore, the findings of this manuscript are easily reproducible for any user of publicly available quantum computers, solving another important problem of research with MZMs-the result reproducibility crisis.

3.
Adv Mater ; 32(16): e1906523, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32105375

RESUMO

Semiconductor nanowires have been playing a crucial role in the development of nanoscale devices for the realization of spin qubits, Majorana fermions, single photon emitters, nanoprocessors, etc. The monolithic growth of site-controlled nanowires is a prerequisite toward the next generation of devices that will require addressability and scalability. Here, combining top-down nanofabrication and bottom-up self-assembly, the growth of Ge wires on prepatterned Si (001) substrates with controllable position, distance, length, and structure is reported. This is achieved by a novel growth process that uses a SiGe strain-relaxation template and can be potentially generalized to other material combinations. Transport measurements show an electrically tunable spin-orbit coupling, with a spin-orbit length similar to that of III-V materials. Also, charge sensing between quantum dots in closely spaced wires is observed, which underlines their potential for the realization of advanced quantum devices. The reported results open a path toward scalable qubit devices using nanowires on silicon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...