Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 6(3): 190201, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31032062

RESUMO

Patterns of trait integration reflect the underlying genetic and developmental architecture of morphology and significantly influence the direction of evolution. Nevertheless, the relationship between integration and disparity is complex and unlikely to be uniform across large phylogenetic and ecological scales. To date, there are little data comparing patterns of integration across major ecological transitions, limiting understanding of the processes driving changes in trait integration and their consequences. Here, we investigated patterns of cranial integration and disparity across pinnipeds, three closely related carnivoran families that have undergone a secondary adaptation to the aquatic niche with varying levels of ecological differentiation. With a three-dimensional geometric morphometric dataset of 677 specimens spanning 15 species, we compared five models of trait integration, and examined the effects of sexual dimorphism and allometry on model support. Pinnipeds varied greatly in patterns of cranial integration compared to terrestrial carnivorans. Interestingly, this variation is concentrated in phocids, which may reflect the broader range of ecological and life-history specializations across phocid species, and greater independence from the terrestrial habitat observed in that group, relative to otariids. Overall, these results indicate that major ecological transitions, and presumably large changes in selection pressures, may drive changes in phenotypic trait integration.

2.
Evolution ; 72(12): 2580-2594, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30246245

RESUMO

Phenotypic integration and modularity are ubiquitous features of complex organisms, describing the magnitude and pattern of relationships among biological traits. A key prediction is that these relationships, reflecting genetic, developmental, and functional interactions, shape evolutionary processes by governing evolvability and constraint. Over the last 60 years, a rich literature of research has quantified patterns of integration and modularity across a variety of clades and systems. Only recently has it become possible to contextualize these findings in a phylogenetic framework to understand how trait integration interacts with evolutionary tempo and mode. Here, we review the state of macroevolutionary studies of integration and modularity, synthesizing empirical and theoretical work into a conceptual framework for predicting the effects of integration on evolutionary rate and disparity: a fly in a tube. While magnitude of integration is expected to influence the potential for phenotypic variation to be produced and maintained, thus defining the shape and size of a tube in morphospace, evolutionary rate, or the speed at which a fly moves around the tube, is not necessarily controlled by trait interactions. Finally, we demonstrate this reduced disparity relative to the Brownian expectation for a given rate of evolution with an empirical example: the avian cranium.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Modelos Biológicos , Animais , Aves/anatomia & histologia , Aves/genética , Dípteros/fisiologia , Variação Genética , Crânio/anatomia & histologia
3.
Evol Biol ; 45(2): 196-210, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755151

RESUMO

Within carnivorans, cats show comparatively little disparity in overall morphology, with species differing mainly in body size. However, detailed shape analyses of individual osteological structures, such as limbs or skulls, have shown that felids display significant morphological differences that correlate with their observed ecological and behavioural ranges. Recently, these shape analyses have been extended to the felid axial skeleton. Results demonstrate a functionally-partitioned vertebral column, with regions varying greatly in level of correlation between shape and ecology. Moreover, a clear distinction is evident between a phylogenetically-constrained neck region and a selection-responsive posterior spine. Here, we test whether this regionalisation of function reflected in vertebral column shape is also translated into varying levels of phenotypic integration between this structure and most other skeletal elements. We accomplish this comparison by performing pairwise tests of integration between vertebral and other osteological units, quantified with 3D geometric morphometric data and analysed both with and without phylogenetic correction. To our knowledge, this is the first study to test for integration across a comprehensive sample of whole-skeleton elements. Our results show that, prior to corrections, strong covariation is present between vertebrae across the vertebral column and all other elements, with the exception of the femur. However, most of these significant correlations disappear after correcting for phylogeny, which is a significant influence on cranial and limb morphology of felids and other carnivorans. Our results thus suggest that the vertebral column of cats displays relative independence from other skeletal elements and may represent several distinct evolutionary morphological modules.

4.
BMC Evol Biol ; 17(1): 133, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28599641

RESUMO

BACKGROUND: Previous studies have demonstrated that the clear morphological differences among vertebrae across the presacral column are accompanied by heterogeneous functional signals in vertebral shape. Further, several lines of evidence suggest that the mammalian axial skeleton is a highly modular structure. These include its composition of serial units, a trade-off between high shape variance and strong conservation of vertebral count, and direct association of regions with anterior expression sites of Hox genes. Here we investigate the modular organisation of the presacral vertebral column of modern cats (Felidae, Carnivora, Mammalia) with pairwise comparisons of vertebral shape covariation (i.e. integration) and evaluate our results against hypotheses of developmental and functional modularity. We used three-dimensional geometric morphometrics to quantify vertebral shape and then assessed integration between pairs of vertebrae with phylogenetic two-block partial least square analysis (PLS). RESULTS: Six modules were identified in the pairwise analyses (vertebrae included are designated as 'C' for cervical, 'T' for thoracic, and 'L' for lumbar): an anterior module (C1 to T1); a transitional module situated between the last cervicals and first thoracics (C6 to T2); an anterior to middle thoracic set (T4 to T8); an anticlinal module (T10 and T11); a posterior set composed of the last two thoracics and lumbars (T12 to L7); and a module showing covariation between the cervicals and the posterior set (T12 to L7). These modules reflect shared developmental pathways, ossification timing, and observed ecological shape diversification in living species of felids. CONCLUSIONS: We show here that patterns of shape integration reflect modular organisation of the vertebral column of felids. Whereas this pattern corresponds with hypotheses of developmental and functional regionalisation in the axial skeleton, it does not simply reflect major vertebral regions. This modularity may also have permitted vertebral partitions, specifically in the posterior vertebral column, to be more responsive to selection and achieve higher morphological disparity than other vertebral regions.


Assuntos
Felidae/anatomia & histologia , Coluna Vertebral/anatomia & histologia , Animais , Análise dos Mínimos Quadrados , Mamíferos/anatomia & histologia , Filogenia
5.
Evol Dev ; 19(2): 85-95, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28211157

RESUMO

Morphological integration and modularity, which describe the relationships among morphological attributes and reflect genetic, developmental, and functional interactions, have been hypothesized to be major influences on trait responses to selection and thus morphological evolution. The mammalian presacral vertebral column shows little variation in vertebral count and therefore specialization for function occurs primarily through modification of vertebral shape. However, vertebral shape has been suggested to be under strong control from developmental canalization, although this has never been explicitly tested. Here, we assess hypotheses of developmental modules in the vertebrae of felids to determine whether developmental interactions are a primary influence on vertebral modularity. Additionally, we analyze the magnitudes of both intravertebral integration and disparity to evaluate if level of integration varies along the vertebral column and, if so, whether integration and disparity are associated. Our results confirm the hypothesis of vertebral developmental modularity, with most presacral vertebrae displaying two modules. Exceptions are concentrated in the boundaries among traditional and functional regions, suggesting that intravertebral modularity may reflect larger-scale modularity of the felid vertebral column. We further demonstrate that overall integration and disparity are highest in posterior vertebrae, thus providing an empirical example of integration potentially promoting greater morphological responses to selection.


Assuntos
Felidae/anatomia & histologia , Felidae/genética , Animais , Evolução Biológica , Felidae/classificação , Mamíferos/anatomia & histologia , Filogenia , Seleção Genética , Coluna Vertebral/anatomia & histologia
6.
Integr Comp Biol ; 56(3): 404-15, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27260858

RESUMO

Developmental constraints can have significant influence on the magnitude and direction of evolutionary change, and many studies have demonstrated that these effects are manifested on macroevolutionary scales. Phenotypic integration, or the strong interactions among traits, has been similarly invoked as a major influence on morphological variation, and many studies have demonstrated that trait integration changes through ontogeny, in many cases decreasing with age. Here, we unify these perspectives in a case study of the ontogeny of the mammalian cranium, focusing on a comparison between marsupials and placentals. Marsupials are born at an extremely altricial state, requiring, in most cases, the use of the forelimbs to climb to the pouch, and, in all cases, an extended period of continuous suckling, during which most of their development occurs. Previous work has shown that marsupials are less disparate in adult cranial form than are placentals, particularly in the oral apparatus, and in forelimb ontogeny and adult morphology, presumably due to functional selection pressures on these two systems during early postnatal development. Using phenotypic trajectory analysis to quantify prenatal and early postnatal cranial ontogeny in 10 species of therian mammals, we demonstrate that this pattern of limited variation is also apparent in the development of the oral apparatus of marsupials, relative to placentals, but not in the skull more generally. Combined with the observation that marsupials show extremely high integration of the oral apparatus in early postnatal ontogeny, while other cranial regions show similar levels of integration to that observed in placentals, we suggest that high integration may compound the effects of the functional constraints for continuous suckling to ultimately limit the ontogenetic and adult disparity of the marsupial oral apparatus throughout their evolutionary history.


Assuntos
Evolução Biológica , Marsupiais/anatomia & histologia , Marsupiais/crescimento & desenvolvimento , Boca/anatomia & histologia , Boca/crescimento & desenvolvimento , Animais
7.
J Anat ; 229(1): 128-41, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27074986

RESUMO

The body masses of cats (Mammalia, Carnivora, Felidae) span a ~300-fold range from the smallest to largest species. Despite this range, felid musculoskeletal anatomy remains remarkably conservative, including the maintenance of a crouched limb posture at unusually large sizes. The forelimbs in felids are important for body support and other aspects of locomotion, as well as climbing and prey capture, with the assistance of the vertebral (and hindlimb) muscles. Here, we examine the scaling of the anterior postcranial musculature across felids to assess scaling patterns between different species spanning the range of felid body sizes. The muscle architecture (lengths and masses of the muscle-tendon unit components) for the forelimb, cervical and thoracic muscles was quantified to analyse how the muscles scale with body mass. Our results demonstrate that physiological cross-sectional areas of the forelimb muscles scale positively with increasing body mass (i.e. becoming relatively larger). Many significantly allometric variables pertain to shoulder support, whereas the rest of the limb muscles become relatively weaker in larger felid species. However, when phylogenetic relationships were corrected for, most of these significant relationships disappeared, leaving no significantly allometric muscle metrics. The majority of cervical and thoracic muscle metrics are not significantly allometric, despite there being many allometric skeletal elements in these regions. When forelimb muscle data were considered in isolation or in combination with those of the vertebral muscles in principal components analyses and MANOVAs, there was no significant discrimination among species by either size or locomotory mode. Our results support the inference that larger felid species have relatively weaker anterior postcranial musculature compared with smaller species, due to an absence of significant positive allometry of forelimb or vertebral muscle architecture. This difference in strength is consistent with behavioural changes in larger felids, such as a reduction of maximal speed and other aspects of locomotor abilities.


Assuntos
Felidae/anatomia & histologia , Músculo Esquelético/anatomia & histologia , Animais , Músculos do Dorso/anatomia & histologia , Biometria , Tamanho Corporal , Feminino , Membro Anterior/anatomia & histologia , Masculino , Análise de Componente Principal
8.
J Anat ; 229(1): 142-52, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27080703

RESUMO

In quadrupeds the musculature of the hindlimbs is expected to be responsible for generating most of the propulsive locomotory forces, as well as contributing to body support by generating vertical forces. In supporting the body, postural changes from crouched to upright limbs are often associated with an increase of body mass in terrestrial tetrapods. However, felids do not change their crouched limb posture despite undergoing a 300-fold size increase between the smallest and largest extant species. Here, we test how changes in the muscle architecture (masses and lengths of components of the muscle-tendon units) of the hindlimbs and lumbosacral region are related to body mass, to assess whether there are muscular compensations for the maintenance of a crouched limb posture at larger body sizes. We use regression and principal component analyses to detect allometries in muscle architecture, with and without phylogenetic correction. Of the muscle lengths that scale allometrically, all scale with negative allometry (i.e. relative shortening with increasing body mass), whereas all tendon lengths scale isometrically. Only two muscles' belly masses and two tendons' masses scale with positive allometry (i.e. relatively more massive with increasing body mass). Of the muscles that scale allometrically for physiological cross-sectional area, all scale positively (i.e. relatively greater area with increasing body mass). These muscles are mostly linked to control of hip and thigh movements. When the architecture data are phylogenetically corrected, there are few significant results, and only the strongest signals remain. None of the vertebral muscles scaled significantly differently from isometry. Principal component analysis and manovas showed that neither body size nor locomotor mode separate the felid species in morphospace. Our results support the inference that, despite some positively allometric trends in muscle areas related to thigh movement, larger cats have relatively weaker hindlimb and lumbosacral muscles in general. This decrease in power may be reflected in relative decreases in running speeds and is consistent with prevailing evidence that behavioural changes may be the primary mode of compensation for a consistently crouched limb posture in larger cats.


Assuntos
Felidae/anatomia & histologia , Músculo Esquelético/anatomia & histologia , Animais , Músculos do Dorso/anatomia & histologia , Biometria , Tamanho Corporal , Feminino , Membro Posterior/anatomia & histologia , Masculino , Análise de Componente Principal
9.
PLoS One ; 8(8): e72868, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23951334

RESUMO

The remarkable elongated upper canines of extinct sabretoothed carnivorous mammals have been the subject of considerable speculation on their adaptive function, but the absence of living analogues prevents any direct inference about their evolution. We analysed scaling relationships of the upper canines of 20 sabretoothed feliform carnivores (Nimravidae, Barbourofelidae, Machairodontinae), representing both dirk-toothed and scimitar-toothed sabretooth ecomorphs, and 33 non-sabretoothed felids in relation to body size in order to characterize and identify the evolutionary processes driving their development, using the scaling relationships of carnassial teeth in both groups as a control. Carnassials display isometric allometry in both sabretooths and non-sabretooths, supporting their close relationship with meat-slicing, whereas the upper canines of both groups display positive allometry with body size. Whereas there is no statistical difference in allometry of upper canine height between dirk-toothed and scimitar-toothed sabretooth ecomorphs, the significantly stronger positive allometry of upper canine height shown by sabretooths as a whole compared to non-sabretooths reveals that different processes drove canine evolution in these groups. Although sabretoothed canines must still have been effective for prey capture and processing by hypercarnivorous predators, canine morphology in these extinct carnivores was likely to have been driven to a greater extent by sexual selection than in non-sabretooths. Scaling relationships therefore indicate the probable importance of sexual selection in the evolution of the hypertrophied sabretooth anterior dentition.


Assuntos
Evolução Biológica , Carnívoros/anatomia & histologia , Cães/anatomia & histologia , Animais , Tamanho Corporal , Carnívoros/fisiologia , Cães/fisiologia , Extinção Biológica , Feminino , Masculino , Preferência de Acasalamento Animal , Seleção Genética , Crânio/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...