Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Glob Chang Biol ; 30(1): e17151, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273511

RESUMO

Observations of the annual cycle of atmospheric CO2 in high northern latitudes provide evidence for an increase in terrestrial metabolism in Arctic tundra and boreal forest ecosystems. However, the mechanisms driving these changes are not yet fully understood. One proposed hypothesis is that ecological change from disturbance, such as wildfire, could increase the magnitude and change the phase of net ecosystem exchange through shifts in plant community composition. Yet, little quantitative work has evaluated this potential mechanism at a regional scale. Here we investigate how fire disturbance influences landscape-level patterns of photosynthesis across western boreal North America. We use Alaska and Canadian large fire databases to identify the perimeters of wildfires, a Landsat-derived land cover time series to characterize plant functional types (PFTs), and solar-induced fluorescence (SIF) from the Orbiting Carbon Observatory-2 (OCO-2) as a proxy for photosynthesis. We analyze these datasets to characterize post-fire changes in plant succession and photosynthetic activity using a space-for-time approach. We find that increases in herbaceous and sparse vegetation, shrub, and deciduous broadleaf forest PFTs during mid-succession yield enhancements in SIF by 8-40% during June and July for 2- to 59-year stands relative to pre-fire controls. From the analysis of post-fire land cover changes within individual ecoregions and modeling, we identify two mechanisms by which fires contribute to long-term trends in SIF. First, increases in annual burning are shifting the stand age distribution, leading to increases in the abundance of shrubs and deciduous broadleaf forests that have considerably higher SIF during early- and mid-summer. Second, fire appears to facilitate a long-term shift from evergreen conifer to broadleaf deciduous forest in the Boreal Plain ecoregion. These findings suggest that increasing fire can contribute substantially to positive trends in seasonal CO2 exchange without a close coupling to long-term increases in carbon storage.


Assuntos
Incêndios , Incêndios Florestais , Ecossistema , Taiga , Canadá , Dióxido de Carbono/metabolismo , América do Norte , Florestas , Fotossíntese , Estações do Ano , Carbono
4.
Nat Commun ; 14(1): 3822, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380668

RESUMO

Climate-driven changes in precipitation amounts and their seasonal variability are expected in many continental-scale regions during the remainder of the 21st century. However, much less is known about future changes in the predictability of seasonal precipitation, an important earth system property relevant for climate adaptation. Here, on the basis of CMIP6 models that capture the present-day teleconnections between seasonal precipitation and previous-season sea surface temperature (SST), we show that climate change is expected to alter the SST-precipitation relationships and thus our ability to predict seasonal precipitation by 2100. Specifically, in the tropics, seasonal precipitation predictability from SSTs is projected to increase throughout the year, except the northern Amazonia during boreal winter. Concurrently, in the extra-tropics predictability is likely to increase in central Asia during boreal spring and winter. The altered predictability, together with enhanced interannual variability of seasonal precipitation, poses new opportunities and challenges for regional water management.

5.
Environ Health Perspect ; 131(4): 47016, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37104243

RESUMO

BACKGROUND: West Nile virus (WNV) is the leading cause of mosquito-borne disease in humans in the United States. Since the introduction of the disease in 1999, incidence levels have stabilized in many regions, allowing for analysis of climate conditions that shape the spatial structure of disease incidence. OBJECTIVES: Our goal was to identify the seasonal climate variables that influence the spatial extent and magnitude of WNV incidence in humans. METHODS: We developed a predictive model of contemporary mean annual WNV incidence using U.S. county-level case reports from 2005 to 2019 and seasonally averaged climate variables. We used a random forest model that had an out-of-sample model performance of R2=0.61. RESULTS: Our model accurately captured the V-shaped area of higher WNV incidence that extends from states on the Canadian border south through the middle of the Great Plains. It also captured a region of moderate WNV incidence in the southern Mississippi Valley. The highest levels of WNV incidence were in regions with dry and cold winters and wet and mild summers. The random forest model classified counties with average winter precipitation levels <23.3mm/month as having incidence levels over 11 times greater than those of counties that are wetter. Among the climate predictors, winter precipitation, fall precipitation, and winter temperature were the three most important predictive variables. DISCUSSION: We consider which aspects of the WNV transmission cycle climate conditions may benefit the most and argued that dry and cold winters are climate conditions optimal for the mosquito species key to amplifying WNV transmission. Our statistical model may be useful in projecting shifts in WNV risk in response to climate change. https://doi.org/10.1289/EHP10986.


Assuntos
Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Estados Unidos/epidemiologia , Humanos , Febre do Nilo Ocidental/epidemiologia , Incidência , Canadá , Temperatura Baixa
6.
Glob Chang Biol ; 28(22): 6789-6806, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36093912

RESUMO

Nature-based climate solutions are a vital component of many climate mitigation strategies, including California's, which aims to achieve carbon neutrality by 2045. Most carbon offsets in California's cap-and-trade program come from improved forest management (IFM) projects. Since 2012, various landowners have set up IFM projects following the California Air Resources Board's IFM protocol. As many of these projects approach their 10th year, we now have the opportunity to assess their effectiveness, identify best practices, and suggest improvements toward future protocol revisions. In this study, we used remote sensing-based datasets to evaluate the carbon trends and harvest histories of 37 IFM projects in California. Despite some current limitations and biases, these datasets can be used to quantify carbon accumulation and harvest rates in offset project lands relative to nearby similar "control" lands before and after the projects began. Five lines of evidence suggest that the carbon accumulated in offset projects to date has generally not been additional to what might have otherwise occurred: (1) most forests in northwestern California have been accumulating carbon since at least the mid-1980s and continue to accumulate carbon, whether enrolled in offset projects or not; (2) harvest rates were high in large timber company project lands before IFM initiation, suggesting they are earning carbon credits for forests in recovery; (3) projects are often located on lands with higher densities of low-timber-value species; (4) carbon accumulation rates have not yet increased on lands that enroll as offset projects, relative to their pre-enrollment levels; and (5) harvest rates have not decreased on most project lands since offset project initiation. These patterns suggest that the current protocol should be improved to robustly measure and reward additionality. In general, our framework of geospatial analyses offers an important and independent means to evaluate the effectiveness of the carbon offsets program, especially as these data products continue improving and as offsets receive attention as a climate mitigation strategy.


Assuntos
Carbono , Agricultura Florestal , California , Clima , Mudança Climática , Conservação dos Recursos Naturais , Florestas , Tecnologia de Sensoriamento Remoto
7.
Water Resour Res ; 58(5): e2021WR031302, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35865123

RESUMO

Precipitation prediction at seasonal timescales is important for planning and management of water resources as well as preparedness for hazards such as floods, droughts and wildfires. Quantifying predictability is quite challenging as a consequence of a large number of potential drivers, varying antecedent conditions, and small sample size of high-quality observations available at seasonal timescales, that in turn, increases prediction uncertainty and the risk of model overfitting. Here, we introduce a generalized probabilistic framework to account for these issues and assess predictability under uncertainty. We focus on prediction of winter (Nov-Mar) precipitation across the contiguous United States, using sea surface temperature-derived indices (averaged in Aug-Oct) as predictors. In our analysis we identify "predictability hotspots," which we define as regions where precipitation is inherently more predictable. Our framework estimates the entire predictive distribution of precipitation using copulas and quantifies prediction uncertainties, while employing principal component analysis for dimensionality reduction and a cross validation technique to avoid overfitting. We also evaluate how predictability changes across different quantiles of the precipitation distribution (dry, normal, wet amounts) using a multi-category 3 × 3 contingency table. Our results indicate that well-defined predictability hotspots occur in the Southwest and Southeast. Moreover, extreme dry and wet conditions are shown to be relatively more predictable compared to normal conditions. Our study may help with water resources management in several subregions of the United States and can be used to assess the fidelity of earth system models in successfully representing teleconnections and predictability.

8.
Sci Adv ; 8(30): eabd2713, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35905176

RESUMO

Exceptional fire activity in 2019 sparked concern about Amazon forest conservation. However, the inability to rapidly separate satellite fire detections by fire type hampered fire suppression and assessment of ecosystem and air quality impacts. Here, we describe the development of a near-real-time approach for tracking contributions from deforestation, forest, agricultural, and savanna fires to burned area and emissions and apply the approach to the 2019 fire season in South America. Across the southern Amazon, 19,700 deforestation fire events accounted for 39% of all satellite active fire detections and the majority of fire carbon emissions (63%; 69 Tg C). Multiday fires accounted for 81% of burned area and 92% of carbon emissions from the Amazon, with many forest fires burning uncontrolled for weeks. Most fire detections from deforestation fires were correctly identified within 2 days (67%), highlighting the potential to improve situational awareness and management outcomes during fire emergencies.

9.
Nat Commun ; 13(1): 2717, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581218

RESUMO

California has experienced a rapid increase in burned area over the past several decades. Although fire behavior is known to be closely tied to ecosystem impacts, most analysis of changing fire regimes has focused solely on area burned. Here we present a standardized database of wildfire behavior, including daily fire rate-of-spread and fire radiative power for large, multiday wildfires in California during 2012-2018 using remotely-sensed active fire observations. We observe that human-ignited fires start at locations with lower tree cover and during periods with more extreme fire weather. These characteristics contribute to more explosive growth in the first few days following ignition for human-caused fires as compared to lightning-caused fires. The faster fire spread, in turn, yields a larger ecosystem impact, with tree mortality more than three times higher for fast-moving fires (>1 km day-1) than for slow moving fires (<0.5 km day-1). Our analysis shows how human-caused fires can amplify ecosystem impacts and highlights the importance of limiting human-caused fires during period of extreme fire weather for meeting forest conservation targets under scenarios of future change.


Assuntos
Incêndios , Incêndios Florestais , Ecossistema , Florestas , Humanos , Árvores
10.
Sci Data ; 9(1): 249, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35637186

RESUMO

Changing wildfire regimes in the western US and other fire-prone regions pose considerable risks to human health and ecosystem function. However, our understanding of wildfire behavior is still limited by a lack of data products that systematically quantify fire spread, behavior and impacts. Here we develop a novel object-based system for tracking the progression of individual fires using 375 m Visible Infrared Imaging Radiometer Suite active fire detections. At each half-daily time step, fire pixels are clustered according to their spatial proximity, and are either appended to an existing active fire object or are assigned to a new object. This automatic system allows us to update the attributes of each fire event, delineate the fire perimeter, and identify the active fire front shortly after satellite data acquisition. Using this system, we mapped the history of California fires during 2012-2020. Our approach and data stream may be useful for calibration and evaluation of fire spread models, estimation of near-real-time wildfire emissions, and as means for prescribing initial conditions in fire forecast models.

11.
Nat Commun ; 13(1): 1964, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35413947

RESUMO

Biophysical effects from deforestation have the potential to amplify carbon losses but are often neglected in carbon accounting systems. Here we use both Earth system model simulations and satellite-derived estimates of aboveground biomass to assess losses of vegetation carbon caused by the influence of tropical deforestation on regional climate across different continents. In the Amazon, warming and drying arising from deforestation result in an additional 5.1 ± 3.7% loss of aboveground biomass. Biophysical effects also amplify carbon losses in the Congo (3.8 ± 2.5%) but do not lead to significant additional carbon losses in tropical Asia due to its high levels of annual mean precipitation. These findings indicate that tropical forests may be undervalued in carbon accounting systems that neglect climate feedbacks from surface biophysical changes and that the positive carbon-climate feedback from deforestation-driven climate change is higher than the feedback originating from fossil fuel emissions.


Assuntos
Carbono/metabolismo , Mudança Climática , Florestas , Clima Tropical , Biomassa , Conservação dos Recursos Naturais , Árvores
12.
Sci Adv ; 8(17): eabl7161, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35476444

RESUMO

Wildfires in boreal forests release large quantities of greenhouse gases to the atmosphere, exacerbating climate change. Here, we characterize the magnitude of recent and projected gross and net boreal North American wildfire carbon dioxide emissions, evaluate fire management as an emissions reduction strategy, and quantify the associated costs. Our results show that wildfires in boreal North America could, by mid-century, contribute to a cumulative net source of nearly 12 gigatonnes of carbon dioxide, about 3% of remaining global carbon dioxide emissions associated with keeping temperatures within the Paris Agreement's 1.5°C limit. With observations from Alaska, we show that current fire management practices limit the burned area. Further, the costs of avoiding carbon dioxide emissions by means of increasing investment in fire management are comparable to or lower than those of other mitigation strategies. Together, our findings highlight the climate risk that boreal wildfires pose and point to fire management as a cost-effective way to limit emissions.

13.
Sci Adv ; 7(47): eabe6417, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34788093

RESUMO

Burned area has increased across California, especially in the Sierra Nevada range. Recent fires there have had devasting social, economic, and ecosystem impacts. To understand the consequences of new extremes in fire weather, here we quantify the sensitivity of wildfire occurrence and burned area in the Sierra Nevada to daily meteorological variables during 2001­2020. We find that the likelihood of fire occurrence increases nonlinearly with daily temperature during summer, with a 1°C increase yielding a 19 to 22% increase in risk. Area burned has a similar, nonlinear sensitivity, with 1°C of warming yielding a 22 to 25% increase in risk. Solely considering changes in summer daily temperatures from climate model projections, we estimate that by the 2040s, fire number will increase by 51 ± 32%, and burned area will increase by 59 ± 33%. These trends highlight the threat posed to fire management by hotter and drier summers.

14.
Nat Clim Chang ; 11: 143-151, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34163539

RESUMO

Future changes in the position of the intertropical convergence zone (ITCZ; a narrow band of heavy precipitation in the tropics) with climate change could affect the livelihood and food security of billions of people. Although models predict a future narrowing of the ITCZ, uncertainties remain large regarding its future position, with most past work focusing on zonal-mean shifts. Here we use projections from 27 state-of-the-art (CMIP6) climate models and document a robust zonally-varying ITCZ response to the SSP3-7.0 scenario by 2100, with a northward shift over eastern Africa and the Indian Ocean, and a southward shift in the eastern Pacific and Atlantic Oceans. The zonally-varying response is consistent with changes in the divergent atmospheric energy transport, and sector-mean shifts of the energy flux equator. Our analysis provides insight about mechanisms influencing the future position of the tropical rainbelt, and may allow for more robust projections of climate change impacts.

15.
Glob Chang Biol ; 27(11): 2377-2391, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33694227

RESUMO

Fires, among other forms of natural and anthropogenic disturbance, play a central role in regulating the location, composition and biomass of forests. Understanding the role of fire in global forest loss is crucial in constraining land-use change emissions and the global carbon cycle. We analysed the relationship between forest loss and fire at 500 m resolution based on satellite-derived data for the 2003-2018 period. Satellite fire data included burned area and active fire detections, to best account for large and small fires, respectively. We found that, on average, 38 ± 9% (± range) of global forest loss was associated with fire, and this fraction remained relatively stable throughout the study period. However, the fraction of fire-related forest loss varied substantially on a regional basis, and showed statistically significant trends in key tropical forest areas. Decreases in the fraction of fire-related forest loss were found where deforestation peaked early in our study period, including the Amazon and Indonesia while increases were found for tropical forests in Africa. The inclusion of active fire detections accounted for 41%, on average, of the total fire-related forest loss, with larger contributions in small clearings in interior tropical forests and human-dominated landscapes. Comparison to higher-resolution fire data with resolutions of 375 and 20 m indicated that commission errors due to coarse resolution fire data largely balanced out omission errors due to missed small fire detections for regional to continental-scale estimates of fire-related forest loss. Besides an improved understanding of forest dynamics, these findings may help to refine and separate fire-related and non-fire-related land-use change emissions in forested ecosystems.


Assuntos
Ecossistema , Incêndios , África , Florestas , Humanos , Indonésia , Árvores
16.
J Adv Model Earth Syst ; 12(9): e2019MS001955, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33042387

RESUMO

Fire emissions of gases and aerosols alter atmospheric composition and have substantial impacts on climate, ecosystem function, and human health. Warming climate and human expansion in fire-prone landscapes exacerbate fire impacts and call for more effective management tools. Here we developed a global fire forecasting system that predicts monthly emissions using past fire data and climate variables for lead times of 1 to 6 months. Using monthly fire emissions from the Global Fire Emissions Database (GFED) as the prediction target, we fit a statistical time series model, the Autoregressive Integrated Moving Average model with eXogenous variables (ARIMAX), in over 1,300 different fire regions. Optimized parameters were then used to forecast future emissions. The forecast system took into account information about region-specific seasonality, long-term trends, recent fire observations, and climate drivers representing both large-scale climate variability and local fire weather. We cross-validated the forecast skill of the system with different combinations of predictors and forecast lead times. The reference model, which combined endogenous and exogenous predictors with a 1 month forecast lead time, explained 52% of the variability in the global fire emissions anomaly, considerably exceeding the performance of a reference model that assumed persistent emissions during the forecast period. The system also successfully resolved detailed spatial patterns of fire emissions anomalies in regions with significant fire activity. This study bridges the gap between the efforts of near-real-time fire forecasts and seasonal fire outlooks and represents a step toward establishing an operational global fire, smoke, and carbon cycle forecasting system.

17.
Science ; 368(6497)2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32554569

RESUMO

Forests have considerable potential to help mitigate human-caused climate change and provide society with many cobenefits. However, climate-driven risks may fundamentally compromise forest carbon sinks in the 21st century. Here, we synthesize the current understanding of climate-driven risks to forest stability from fire, drought, biotic agents, and other disturbances. We review how efforts to use forests as natural climate solutions presently consider and could more fully embrace current scientific knowledge to account for these climate-driven risks. Recent advances in vegetation physiology, disturbance ecology, mechanistic vegetation modeling, large-scale ecological observation networks, and remote sensing are improving current estimates and forecasts of the risks to forest stability. A more holistic understanding and quantification of such risks will help policy-makers and other stakeholders effectively use forests as natural climate solutions.


Assuntos
Mudança Climática , Florestas , Sequestro de Carbono , Secas , Incêndios , Formulação de Políticas
18.
J Clim ; 34(2): 737-754, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34045793

RESUMO

Understanding the physical drivers of seasonal hydroclimatic variability and improving predictive skill remains a challenge with important socioeconomic and environmental implications for many regions around the world. Physics-based deterministic models show limited ability to predict precipitation as the lead time increases, due to imperfect representation of physical processes and incomplete knowledge of initial conditions. Similarly, statistical methods drawing upon established climate teleconnections have low prediction skill due to the complex nature of the climate system. Recently, promising data-driven approaches have been proposed, but they often suffer from overparameterization and overfitting due to the short observational record, and they often do not account for spatiotemporal dependencies among covariates (i.e., predictors such as sea surface temperatures). This study addresses these challenges via a predictive model based on a graph-guided regularizer that simultaneously promotes similarity of predictive weights for highly correlated covariates and enforces sparsity in the covariate domain. This approach both decreases the effective dimensionality of the problem and identifies the most predictive features without specifying them a priori. We use large ensemble simulations from a climate model to construct this regularizer, reducing the structural uncertainty in the estimation. We apply the learned model to predict winter precipitation in the southwestern United States using sea surface temperatures over the entire Pacific basin, and demonstrate its superiority compared to other regularization approaches and statistical models informed by known teleconnections. Our results highlight the potential to combine optimally the space-time structure of predictor variables learned from climate models with new graph-based regularizers to improve seasonal prediction.

19.
Glob Chang Biol ; 26(3): 1592-1607, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31658411

RESUMO

Fire is a primary disturbance in boreal forests and generates both positive and negative climate forcings. The influence of fire on surface albedo is a predominantly negative forcing in boreal forests, and one of the strongest overall, due to increased snow exposure in the winter and spring months. Albedo forcings are spatially and temporally heterogeneous and depend on a variety of factors related to soils, topography, climate, land cover/vegetation type, successional dynamics, time since fire, season, and fire severity. However, how these variables interact to influence albedo is not well understood, and quantifying these relationships and predicting postfire albedo becomes increasingly important as the climate changes and management frameworks evolve to consider climate impacts. Here we developed a MODIS-derived 'blue sky' albedo product and a novel machine learning modeling framework to predict fire-driven changes in albedo under historical and future climate scenarios across boreal North America. Converted to radiative forcing (RF), we estimated that fires generate an annual mean cooling of -1.77 ± 1.35 W/m2 from albedo under historical climate conditions (1971-2000) integrated over 70 years postfire. Increasing postfire albedo along a south-north climatic gradient was offset by a nearly opposite gradient in solar insolation, such that large-scale spatial patterns in RF were minimal. Our models suggest that climate change will lead to decreases in mean annual postfire albedo, and hence a decreasing strength of the negative RF, a trend dominated by decreased snow cover in spring months. Considering the range of future climate scenarios and model uncertainties, we estimate that for fires burning in the current era (2016) the cooling effect from long-term postfire albedo will be reduced by 15%-28% due to climate change.


Assuntos
Mudança Climática , Incêndios , América do Norte , Taiga , Árvores
20.
Nat Plants ; 5(9): 952-958, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31451797

RESUMO

High-latitude regions have experienced rapid warming in recent decades, and this trend is projected to continue over the twenty-first century1. Fire is also projected to increase with warming2,3. We show here, consistent with changes during the Holocene4, that changes in twenty-first century climate and fire are likely to alter the composition of Alaskan boreal forests. We hypothesize that competition for nutrients after fire in early succession and for light in late succession in a warmer climate will cause shifts in plant functional type. Consistent with observations, our ecosystem model predicts evergreen conifers to be the current dominant tree type in Alaska. However, under future climate and fire, our analysis suggests the relative dominance of deciduous broadleaf trees nearly doubles, accounting for 58% of the Alaska ecosystem's net primary productivity by 2100, with commensurate declines in contributions from evergreen conifer trees and herbaceous plants. Post-fire deciduous broadleaf tree growth under a future climate is sustained from enhanced microbial nitrogen mineralization caused by warmer soils and deeper active layers, resulting in taller trees that compete more effectively for light. The expansion of deciduous broadleaf forests will affect the carbon cycle, surface energy fluxes and ecosystem function, thereby modifying important feedbacks with the climate system.


Assuntos
Incêndios , Florestas , Aquecimento Global , Alaska , Mudança Climática , Modelos Biológicos , Taiga , Traqueófitas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...