Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Hered ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381553

RESUMO

RK Wayne has arguably been the most influential geneticist of canids, famously promoting the conservation of wolves in his homeland, the U.S.. His influence has been felt in other countries and regions outside the contiguous U.S., where he inspired others, also including former graduate students and research fellows of his, to use modern molecular techniques to examine the evolutionary biology of canids to inform the conservation and management of wolves. In this review, we focus on the implications of Wayne's work on wolves outside the U.S.. He envisioned a clear future for wolf conservation research, involving the study of wolves' ecological and genetic diversity, and the description of ecotypes requiring conservation. He also documented widespread hybridization among canids and introgression of DNA from domestic dogs to wolves, a process that started dozens of thousands of years ago. His work therefore calls for innovative studies, such as examining the potential fitness benefits of introgression. Inspired by his results, for example on the purging of deleterious alleles in small populations, wolf researchers should use novel molecular tools to challenge other conservation genetics paradigms. Overall, RK Wayne's work constitutes a call for answers, which as scientists or citizens concerned with conservation matters, we are obliged to address, as we contribute to monitoring and maintaining biodiversity during our period of dramatic transformations of the biosphere.

2.
Heredity (Edinb) ; 129(6): 346-355, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36319737

RESUMO

Cat domestication likely initiated as a symbiotic relationship between wildcats (Felis silvestris subspecies) and the peoples of developing agrarian societies in the Fertile Crescent. As humans transitioned from hunter-gatherers to farmers ~12,000 years ago, bold wildcats likely capitalized on increased prey density (i.e., rodents). Humans benefited from the cats' predation on these vermin. To refine the site(s) of cat domestication, over 1000 random-bred cats of primarily Eurasian descent were genotyped for single-nucleotide variants and short tandem repeats. The overall cat population structure suggested a single worldwide population with significant isolation by the distance of peripheral subpopulations. The cat population heterozygosity decreased as genetic distance from the proposed cat progenitor's (F.s. lybica) natural habitat increased. Domestic cat origins are focused in the eastern Mediterranean Basin, spreading to nearby islands, and southernly via the Levantine coast into the Nile Valley. Cat population diversity supports the migration patterns of humans and other symbiotic species.


Assuntos
Domesticação , Repetições de Microssatélites , Animais , Gatos/genética , Genótipo , Oriente Médio
3.
Animals (Basel) ; 12(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35268200

RESUMO

Wolves (Canis lupus) are generally monitored by visual observations, camera traps, and DNA traces. In this study, we evaluated acoustic monitoring of wolf howls as a method for monitoring wolves, which may permit detection of wolves across longer distances than that permitted by camera traps. We analyzed acoustic data of wolves' howls collected from both wild and captive ones. The analysis focused on individual and subspecies recognition. Furthermore, we aimed to determine the usefulness of acoustic monitoring in the field given the limited data for Eurasian wolves. We analyzed 170 howls from 16 individual wolves from 3 subspecies: Arctic (Canis lupus arctos), Eurasian (C. l. lupus), and Northwestern wolves (C. l. occidentalis). Variables from the fundamental frequency (f0) (lowest frequency band of a sound signal) were extracted and used in discriminant analysis, classification matrix, and pairwise post-hoc Hotelling test. The results indicated that Arctic and Eurasian wolves had subspecies identifiable calls, while Northwestern wolves did not, though this sample size was small. Identification on an individual level was successful for all subspecies. Individuals were correctly classified with 80%-100% accuracy, using discriminant function analysis. Our findings suggest acoustic monitoring could be a valuable and cost-effective tool that complements camera traps, by improving long-distance detection of wolves.

4.
Sci Rep ; 12(1): 4195, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264717

RESUMO

Intra- and inter-specific gene flow are natural evolutionary processes. However, human-induced hybridization is a global conservation concern across taxa, and the development of discriminant genetic markers to differentiate among gene flow processes is essential. Wolves (Canis lupus) are affected by hybridization, particularly in southern Europe, where ongoing recolonization of historic ranges is augmenting gene flow among divergent populations. Our aim was to provide diagnostic canid markers focused on the long-divergent Iberian, Italian and Dinaric wolf populations, based on existing genomic resources. We used 158 canid samples to select a panel of highly informative single nucleotide polymorphisms (SNPs) to (i) distinguish wolves in the three regions from domestic dogs (C. l. familiaris) and golden jackals (C. aureus), and (ii) identify their first two hybrid generations. The resulting 192 SNPs correctly identified the five canid groups, all simulated first-generation (F1) hybrids (0.482 ≤ Qi ≤ 0.512 between their respective parental groups) and all first backcross (BC1) individuals (0.723 ≤ Qi ≤ 0.827 to parental groups). An assay design and test with invasive and non-invasive canid samples performed successfully for 178 SNPs. By separating natural population admixture from inter-specific hybridization, our reduced panel can help advance evolutionary research, monitoring, and timely conservation management.


Assuntos
Canidae , Lobos , Animais , Canidae/genética , Cães , Fluxo Gênico , Hibridização Genética , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Lobos/genética
5.
Mol Ecol ; 31(3): 993-1006, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34775636

RESUMO

Carnivores tend to exhibit a lack of (or less pronounced) genetic structure at continental scales in both a geographic and temporal sense and this can confound the identification of post-glacial colonization patterns in this group. In this study we used genome-wide data (using genotyping by sequencing [GBS]) to reconstruct the phylogeographic history of a widespread carnivore, the red fox (Vulpes vulpes), by investigating broad-scale patterns of genomic variation, differentiation and admixture amongst contemporary populations in Europe. Using 15,003 single nucleotide polymorphisms (SNPs) from 524 individuals allowed us to identify the importance of refugial regions for the red fox in terms of endemism (e.g., Iberia). In addition, we tested multiple post-glacial recolonization scenarios of previously glaciated regions during the Last Glacial Maximum using an Approximate Bayesian Computation (ABC) approach that were unresolved from previous studies. This allowed us to identify the role of admixture from multiple source population post-Younger Dryas in the case of Scandinavia and ancient land-bridges in the colonization of the British Isles. A natural colonization of Ireland was deemed more likely than an ancient human-mediated introduction as has previously been proposed and potentially points to a larger mammalian community on the island in the early post-glacial period. Using genome-wide data has allowed us to tease apart broad-scale patterns of structure and diversity in a widespread carnivore in Europe that was not evident from using more limited marker sets and provides a foundation for next-generation phylogeographic studies in other non-model species.


Assuntos
Raposas , Variação Genética , Animais , Teorema de Bayes , Europa (Continente) , Raposas/genética , Humanos , Filogenia , Filogeografia
6.
Curr Biol ; 31(24): 5571-5579.e6, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34655517

RESUMO

The Sardinian dhole (Cynotherium sardous)1 was an iconic and unique canid species that was endemic to Sardinia and Corsica until it became extinct at the end of the Late Pleistocene.2-5 Given its peculiar dental morphology, small body size, and high level of endemism, several extant canids have been proposed as possible relatives of the Sardinian dhole, including the Asian dhole and African hunting dog ancestor.3,6-9 Morphometric analyses3,6,8-12 have failed to clarify the evolutionary relationship with other canids.We sequenced the genome of a ca-21,100-year-old Sardinian dhole in order to understand its genomic history and clarify its phylogenetic position. We found that it represents a separate taxon from all other living canids from Eurasia, Africa, and North America, and that the Sardinian dhole lineage diverged from the Asian dhole ca 885 ka. We additionally detected historical gene flow between the Sardinian and Asian dhole lineages, which ended approximately 500-300 ka, when the land bridge between Sardinia and mainland Italy was already broken, severing their population connectivity. Our sample showed low genome-wide diversity compared to other extant canids-probably a result of the long-term isolation-that could have contributed to the subsequent extinction of the Sardinian dhole.


Assuntos
Canidae , Animais , Evolução Biológica , Canidae/genética , Cães , Fluxo Gênico , Genoma , Filogenia
8.
BMC Genomics ; 22(1): 623, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34407764

RESUMO

BACKGROUND: The low cost and rapidity of microsatellite analysis have led to the development of several markers for many species. Because in non-invasive genetics it is recommended to genotype individuals using few loci, generally a subset of markers is selected. The choice of different marker panels by different research groups studying the same population can cause problems and bias in data analysis. A priority issue in conservation genetics is the comparability of data produced by different labs with different methods. Here, we compared data from previous and ongoing studies to identify a panel of microsatellite loci efficient for the long-term monitoring of Apennine brown bears (Ursus arctos marsicanus), aiming at reducing genotyping uncertainty and allowing reliable individual identifications overtimes. RESULTS: We examined all microsatellite markers used up to now and identified 19 candidate loci. We evaluated the efficacy of 13 of the most commonly used loci analyzing 194 DNA samples belonging to 113 distinct bears selected from the Italian national biobank. We compared data from 4 different marker subsets on the basis of genotyping errors, allelic patterns, observed and expected heterozygosity, discriminatory powers, number of mismatching pairs, and probability of identity. The optimal marker set was selected evaluating the low molecular weight, the high discriminatory power, and the low occurrence of genotyping errors of each primer. We calibrated allele calls and verified matches among genotypes obtained in previous studies using the complete set of 13 STRs (Short Tandem Repeats), analyzing six invasive DNA samples from distinct individuals. Differences in allele-sizing between labs were consistent, showing a substantial overlap of the individual genotyping. CONCLUSIONS: The proposed marker set comprises 11 Ursus specific markers with the addition of cxx20, the canid-locus less prone to genotyping errors, in order to prevent underestimation (maximizing the discriminatory power) and overestimation (minimizing the genotyping errors) of the number of Apennine brown bears. The selected markers allow saving time and costs with the amplification in multiplex of all loci thanks to the same annealing temperature. Our work optimizes the available resources by identifying a shared panel and a uniform methodology capable of improving comparisons between past and future studies.


Assuntos
Repetições de Microssatélites , Ursidae , Alelos , Animais , DNA , Genótipo , Ursidae/genética
9.
BMC Genomics ; 22(1): 473, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34171993

RESUMO

BACKGROUND: Understanding the processes that lead to hybridization of wolves and dogs is of scientific and management importance, particularly over large geographical scales, as wolves can disperse great distances. However, a method to efficiently detect hybrids in routine wolf monitoring is lacking. Microsatellites offer only limited resolution due to the low number of markers showing distinctive allele frequencies between wolves and dogs. Moreover, calibration across laboratories is time-consuming and costly. In this study, we selected a panel of 96 ancestry informative markers for wolves and dogs, derived from the Illumina CanineHD Whole-Genome BeadChip (174 K). We designed very short amplicons for genotyping on a microfluidic array, thus making the method suitable also for non-invasively collected samples. RESULTS: Genotypes based on 93 SNPs from wolves sampled throughout Europe, purebred and non-pedigree dogs, and suspected hybrids showed that the new panel accurately identifies parental individuals, first-generation hybrids and first-generation backcrosses to wolves, while second- and third-generation backcrosses to wolves were identified as advanced hybrids in almost all cases. Our results support the hybrid identity of suspect individuals and the non-hybrid status of individuals regarded as wolves. We also show the adequacy of these markers to assess hybridization at a European-wide scale and the importance of including samples from reference populations. CONCLUSIONS: We showed that the proposed SNP panel is an efficient tool for detecting hybrids up to the third-generation backcrosses to wolves across Europe. Notably, the proposed genotyping method is suitable for a variety of samples, including non-invasive and museum samples, making this panel useful for wolf-dog hybrid assessments and wolf monitoring at both continental and different temporal scales.


Assuntos
Lobos , Animais , Cães , Europa (Continente) , Hibridização Genética , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Lobos/genética
10.
Sci Rep ; 11(1): 10986, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34040003

RESUMO

Local adaptation of animals to the environment can abruptly become a burden when faced with rapid climatic changes such as those foreseen for the Italian peninsula over the next 70 years. Our study investigates the genetic structure of the Italian goat populations and links it with the environment and how genetics might evolve over the next 50 years. We used one of the largest national datasets including > 1000 goats from 33 populations across the Italian peninsula collected by the Italian Goat Consortium and genotyped with over 50 k markers. Our results showed that Italian goats can be discriminated in three groups reflective of the Italian geography and its geo-political situation preceding the country unification around two centuries ago. We leveraged the remarkable genetic and geographical diversity of the Italian goat populations and performed landscape genomics analysis to disentangle the relationship between genotype and environment, finding 64 SNPs intercepting genomic regions linked to growth, circadian rhythm, fertility, and inflammatory response. Lastly, we calculated the hypothetical future genotypic frequencies of the most relevant SNPs identified through landscape genomics to evaluate their long-term effect on the genetic structure of the Italian goat populations. Our results provide an insight into the past and the future of the Italian local goat populations, helping the institutions in defining new conservation strategy plans that could preserve their diversity and their link to local realities challenged by climate change.


Assuntos
Genômica , Cabras , Polimorfismo de Nucleotídeo Único , Animais , Genética Populacional , Genótipo , Seleção Genética
11.
Proc Biol Sci ; 287(1931): 20201206, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32693716

RESUMO

The grey wolf (Canis lupus) is one of the most widely distributed mammals in which a variety of distinct populations have been described. However, given their currently fragmented distribution and recent history of human-induced population decline, little is known about the events that led to their differentiation. Based on the analysis of whole canid genomes, we examined the divergence times between Southern European wolf populations and their ancient demographic history. We found that all present-day Eurasian wolves share a common ancestor ca 36 000 years ago, supporting the hypothesis that all extant wolves derive from a single population that subsequently expanded after the Last Glacial Maximum. We also estimated that the currently isolated European populations of the Iberian Peninsula, Italy and the Dinarics-Balkans diverged very closely in time, ca 10 500 years ago, and maintained negligible gene flow ever since. This indicates that the current genetic and morphological distinctiveness of Iberian and Italian wolves can be attributed to their isolation dating back to the end of the Pleistocene, predating the recent human-induced extinction of wolves in Central Europe by several millennia.


Assuntos
Genética Populacional , Lobos/genética , Animais , Europa (Continente) , Fluxo Gênico , Genoma
12.
Mol Ecol Resour ; 20(3)2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31925943

RESUMO

The genomic era has led to an unprecedented increase in the availability of genome-wide data for a broad range of taxa. Wildlife management strives to make use of these vast resources to enable refined genetic assessments that enhance biodiversity conservation. However, as new genomic platforms emerge, problems remain in adapting the usually complex approaches for genotyping of noninvasively collected wildlife samples. Here, we provide practical guidelines for the standardized development of reduced single nucleotide polymorphism (SNP) panels applicable for microfluidic genotyping of degraded DNA samples, such as faeces or hairs. We demonstrate how microfluidic SNP panels can be optimized to efficiently monitor European wildcat (Felis silvestris S.) populations. We show how panels can be set up in a modular fashion to accommodate informative markers for relevant population genetics questions, such as individual identification, hybridization assessment and the detection of population structure. We discuss various aspects regarding the implementation of reduced SNP panels and provide a framework that will allow both molecular ecologists and practitioners to help bridge the gap between genomics and applied wildlife conservation.


Assuntos
Animais Selvagens/genética , Polimorfismo de Nucleotídeo Único/genética , Animais , Biodiversidade , Biomarcadores/metabolismo , Gatos , Genética Populacional/métodos , Genômica/métodos , Genótipo , Técnicas de Genotipagem/métodos , Hibridização Genética/genética
13.
Sci Rep ; 9(1): 11612, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406125

RESUMO

The survival of indigenous European wildcat (Felis silvestris silvestris) populations can be locally threatened by introgressive hybridization with free-ranging domestic cats. Identifying pure wildcats and investigating the ancestry of admixed individuals becomes thus a conservation priority. We analyzed 63k cat Single Nucleotide Polymorphisms (SNPs) with multivariate, Bayesian and gene-search tools to better evaluate admixture levels between domestic and wild cats collected in Europe, timing and ancestry proportions of their hybrids and backcrosses, and track the origin (wild or domestic) of the genomic blocks carried by admixed cats, also looking for possible deviations from neutrality in their inheritance patterns. Small domestic ancestry blocks were detected in the genomes of most admixed cats, which likely originated from hybridization events occurring from 6 to 22 generations in the past. We identified about 1,900 outlier coding genes with excess of wild or domestic ancestry compared to random expectations in the admixed individuals. More than 600 outlier genes were significantly enriched for Gene Ontology (GO) categories mainly related to social behavior, functional and metabolic adaptive processes (wild-like genes), involved in cognition and neural crest development (domestic-like genes), or associated with immune system functions and lipid metabolism (parental-like genes). These kinds of genomic ancestry analyses could be reliably applied to unravel the admixture dynamics in European wildcats, as well as in other hybridizing populations, in order to design more efficient conservation plans.


Assuntos
Animais Selvagens/genética , Genômica , Hibridização Genética , Animais , Gatos , Conservação dos Recursos Naturais , DNA Mitocondrial/genética , Europa (Continente) , Mutação , Polimorfismo de Nucleotídeo Único
14.
BMC Genomics ; 19(1): 533, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30005602

RESUMO

BACKGROUND: Genomic methods can provide extraordinary tools to explore the genetic background of wild species and domestic breeds, optimize breeding practices, monitor and limit the spread of recessive diseases, and discourage illegal crossings. In this study we analysed a panel of 170k Single Nucleotide Polymorphisms with a combination of multivariate, Bayesian and outlier gene approaches to examine the genome-wide diversity and inbreeding levels in a recent wolf x dog cross-breed, the Czechoslovakian Wolfdog, which is becoming increasingly popular across Europe. RESULTS: Pairwise FST values, multivariate and assignment procedures indicated that the Czechoslovakian Wolfdog was significantly differentiated from all the other analysed breeds and also well-distinguished from both parental populations (Carpathian wolves and German Shepherds). Coherently with the low number of founders involved in the breed selection, the individual inbreeding levels calculated from homozygosity regions were relatively high and comparable with those derived from the pedigree data. In contrast, the coefficient of relatedness between individuals estimated from the pedigrees often underestimated the identity-by-descent scores determined using genetic profiles. The timing of the admixture and the effective population size trends estimated from the LD patterns reflected the documented history of the breed. Ancestry reconstruction methods identified more than 300 genes with excess of wolf ancestry compared to random expectations, mainly related to key morphological features, and more than 2000 genes with excess of dog ancestry, playing important roles in lipid metabolism, in the regulation of circadian rhythms, in learning and memory processes, and in sociability, such as the COMT gene, which has been described as a candidate gene for the latter trait in dogs. CONCLUSIONS: In this study we successfully applied genome-wide procedures to reconstruct the history of the Czechoslovakian Wolfdog, assess individual wolf ancestry proportions and, thanks to the availability of a well-annotated reference genome, identify possible candidate genes for wolf-like and dog-like phenotypic traits typical of this breed, including commonly inherited disorders. Moreover, through the identification of ancestry-informative markers, these genomic approaches could provide tools for forensic applications to unmask illegal crossings with wolves and uncontrolled trades of recent and undeclared wolfdog hybrids.


Assuntos
Cães/genética , Genoma , Lobos/genética , Animais , Teorema de Bayes , Catecol O-Metiltransferase/genética , Ritmo Circadiano/genética , Tchecoslováquia , DNA/isolamento & purificação , DNA/metabolismo , Ontologia Genética , Genética Populacional , Hibridização Genética , Desequilíbrio de Ligação , Metabolismo dos Lipídeos/genética , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal
15.
Evol Appl ; 11(5): 662-680, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29875809

RESUMO

Hybridisation between a domesticated species and its wild ancestor is an important conservation problem, especially if it results in the introgression of domestic gene variants into wild species. Nevertheless, the legal status of hybrids remains unregulated, partially because of the limited understanding of the hybridisation process and its consequences. The occurrence of hybridisation between grey wolves and domestic dogs is well documented from different parts of the wolf geographic range, but little is known about the frequency of hybridisation events, their causes and the genetic impact on wolf populations. We analysed 61K SNPs spanning the canid genome in wolves from across Eurasia and North America and compared that data to similar data from dogs to identify signatures of admixture. The haplotype block analysis, which included 38 autosomes and the X chromosome, indicated the presence of individuals of mixed wolf-dog ancestry in most Eurasian wolf populations, but less admixture was present in North American populations. We found evidence for male-biased introgression of dog alleles into wolf populations, but also identified a first-generation hybrid resulting from mating between a female dog and a male wolf. We found small blocks of dog ancestry in the genomes of 62% Eurasian wolves studied and melanistic individuals with no signs of recent admixed ancestry, but with a dog-derived allele at a locus linked to melanism. Consequently, these results suggest that hybridisation has been occurring in different parts of Eurasia on multiple timescales and is not solely a recent phenomenon. Nevertheless, wolf populations have maintained genetic differentiation from dogs, suggesting that hybridisation at a low frequency does not diminish distinctiveness of the wolf gene pool. However, increased hybridisation frequency may be detrimental for wolf populations, stressing the need for genetic monitoring to assess the frequency and distribution of individuals resulting from recent admixture.

16.
Mol Biol Evol ; 35(5): 1190-1209, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29688543

RESUMO

Pigmentation is often used to understand how natural selection affects genetic variation in wild populations since it can have a simple genetic basis, and can affect a variety of fitness-related traits (e.g., camouflage, thermoregulation, and sexual display). In gray wolves, the K locus, a ß-defensin gene, causes black coat color via a dominantly inherited KB allele. The allele is derived from dog-wolf hybridization and is at high frequency in North American wolf populations. We designed a DNA capture array to probe the geographic origin, age, and number of introgression events of the KB allele in a panel of 331 wolves and 20 dogs. We found low diversity in KB, but not ancestral ky, wolf haplotypes consistent with a selective sweep of the black haplotype across North America. Further, North American wolf KB haplotypes are monophyletic, suggesting that a single adaptive introgression from dogs to wolves most likely occurred in the Northwest Territories or Yukon. We use a new analytical approach to date the origin of the KB allele in Yukon wolves to between 1,598 and 7,248 years ago, suggesting that introgression with early Native American dogs was the source. Using population genetic simulations, we show that the K locus is undergoing natural selection in four wolf populations. We find evidence for balancing selection, specifically in Yellowstone wolves, which could be a result of selection for enhanced immunity in response to distemper. With these data, we demonstrate how the spread of an adaptive variant may have occurred across a species' geographic range.


Assuntos
Cor de Cabelo/genética , Seleção Genética , Lobos/genética , beta-Defensinas/genética , Animais , Simulação por Computador , Cães , Frequência do Gene , Variação Genética , Haplótipos , Homozigoto , América do Norte
17.
PLoS One ; 12(5): e0176560, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28489863

RESUMO

The survival of isolated small populations is threatened by both demographic and genetic factors. Large carnivores declined for centuries in most of Europe due to habitat changes, overhunting of their natural prey and direct persecution. However, the current rewilding trends are driving many carnivore populations to expand again, possibly reverting the erosion of their genetic diversity. In this study we reassessed the extent and origin of the genetic variation of the Italian wolf population, which is expanding after centuries of decline and isolation. We genotyped wolves from Italy and other nine populations at four mtDNA regions (control-region, ATP6, COIII and ND4) and 39 autosomal microsatellites. Results of phylogenetic analyses and assignment procedures confirmed in the Italian wolves a second private mtDNA haplotype, which belongs to a haplogroup distributed mostly in southern Europe. Coalescent analyses showed that the unique mtDNA haplotypes in the Italian wolves likely originated during the late Pleistocene. ABC simulations concordantly showed that the extant wolf populations in Italy and in south-western Europe started to be isolated and declined right after the last glacial maximum. Thus, the standing genetic variation in the Italian wolves principally results from the historical isolation south of the Alps.


Assuntos
DNA Mitocondrial/genética , Variação Genética , Genótipo , Lobos/genética , Animais , Genética Populacional , Haplótipos , Itália , Filogenia
18.
Mol Biol Evol ; 34(9): 2324-2339, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28549194

RESUMO

Hybridization is a natural or anthropogenic process that can deeply affect the genetic make-up of populations, possibly decreasing individual fitness but sometimes favoring local adaptations. The population of Italian wolves (Canis lupus), after protracted demographic declines and isolation, is currently expanding in anthropic areas, with documented cases of hybridization with stray domestic dogs. However, identifying admixture patterns in deeply introgressed populations is far from trivial. In this study, we used a panel of 170,000 SNPs analyzed with multivariate, Bayesian and local ancestry reconstruction methods to identify hybrids, estimate their ancestry proportions and timing since admixture. Moreover, we carried out preliminary genotype-phenotype association analyses to identify the genetic bases of three phenotypic traits (black coat, white claws, and spur on the hind legs) putative indicators of hybridization. Results showed no sharp subdivisions between nonadmixed wolves and hybrids, indicating that recurrent hybridization and deep introgression might have started mostly at the beginning of the population reexpansion. In hybrids, we identified a number of genomic regions with excess of ancestry in one of the parental populations, and regions with excess or resistance to introgression compared with neutral expectations. The three morphological traits showed significant genotype-phenotype associations, with a single genomic region for black coats and white claws, and with multiple genomic regions for the spur. In all cases the associated haplotypes were likely derived from dogs. In conclusion, we show that the use of multiple genome-wide ancestry reconstructions allows clarifying the admixture dynamics even in highly introgressed populations, and supports their conservation management.


Assuntos
Estudos de Associação Genética/métodos , Genética Populacional/métodos , Lobos/genética , Animais , Teorema de Bayes , Demografia , Cães/genética , Variação Genética/genética , Genoma/genética , Genômica/métodos , Haplótipos , Hibridização Genética/genética , Itália , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA/métodos
19.
Int J Parasitol Parasites Wildl ; 6(1): 1-7, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28180084

RESUMO

After centuries of massive decline, the recovery of the wolf (Canis lupus italicus) in Italy is a typical conservation success story. To learn more about the possible role of parasites in the wolves' individual and population health and conservation we used non-invasive molecular approaches on fecal samples to identify individual wolves, pack membership, and the taeniids present, some of which are zoonotic. A total of 130 specimens belonging to 54 wolves from eight packs were collected and examined. Taeniid eggs were isolated using a sieving/flotation technique, and the species level was identified by PCR (gene target: 12S rRNA and nad1). Taeniid prevalence was 40.7% for Taenia hydatigena, 22.2% for T. krabbei, 1.8% for T. polyachanta and 5.5% for Echinococcus granulosus. The prevalence of E. granulosus is discussed. Our results show that the taeniid fauna found in wolves from the Foreste Casentinesi National Park is comparable to that described for other domestic and wild Italian canids and provides insights into the wolves' diet and their relationship with the environment.

20.
Biol Rev Camb Philos Soc ; 92(3): 1601-1629, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27682639

RESUMO

The grey wolf (Canis lupus) is an iconic large carnivore that has increasingly been recognized as an apex predator with intrinsic value and a keystone species. However, wolves have also long represented a primary source of human-carnivore conflict, which has led to long-term persecution of wolves, resulting in a significant decrease in their numbers, genetic diversity and gene flow between populations. For more effective protection and management of wolf populations in Europe, robust scientific evidence is crucial. This review serves as an analytical summary of the main findings from wolf population genetic studies in Europe, covering major studies from the 'pre-genomic era' and the first insights of the 'genomics era'. We analyse, summarize and discuss findings derived from analyses of three compartments of the mammalian genome with different inheritance modes: maternal (mitochondrial DNA), paternal (Y chromosome) and biparental [autosomal microsatellites and single nucleotide polymorphisms (SNPs)]. To describe large-scale trends and patterns of genetic variation in European wolf populations, we conducted a meta-analysis based on the results of previous microsatellite studies and also included new data, covering all 19 European countries for which wolf genetic information is available: Norway, Sweden, Finland, Estonia, Latvia, Lithuania, Poland, Czech Republic, Slovakia, Germany, Belarus, Russia, Italy, Croatia, Bulgaria, Bosnia and Herzegovina, Greece, Spain and Portugal. We compared different indices of genetic diversity in wolf populations and found a significant spatial trend in heterozygosity across Europe from south-west (lowest genetic diversity) to north-east (highest). The range of spatial autocorrelation calculated on the basis of three characteristics of genetic diversity was 650-850 km, suggesting that the genetic diversity of a given wolf population can be influenced by populations up to 850 km away. As an important outcome of this synthesis, we discuss the most pressing issues threatening wolf populations in Europe, highlight important gaps in current knowledge, suggest solutions to overcome these limitations, and provide recommendations for science-based wolf conservation and management at regional and Europe-wide scales.


Assuntos
Conservação dos Recursos Naturais , Genética Populacional , Lobos/genética , Animais , Europa (Continente) , Variação Genética , Repetições de Microssatélites/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...