Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 287: 120092, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34715142

RESUMO

AIMS: Transforming growth factor-ß (TGF-ß) mediates fibrotic manifestations of diabetic nephropathy. We demonstrated proteasomal degradation of anti-fibrotic protein, nuclear factor-erythroid derived 2 (NF-E2), in TGF-ß treated human renal proximal tubule (HK-11) cells and in diabetic mouse kidneys. The current study examined the role of mitogen-activated protein kinase (MAPK) pathways in mediating NF-E2 proteasomal degradation and stimulating profibrotic signaling in HK-11 cells. MAIN METHODS: HK-11 cells were pretreated with vehicle or appropriate proteasome and MAPK inhibitors, MG132 (0.5 µM), SB203580 (1 µM), PD98059 (25 µM) and SP600125 (10 µM), respectively, followed by treatment with/without TGF-ß (10 ng/ml, 24 h). Cell lysates and kidney homogenates from FVB and OVE26 mice treated with/without MG132 were immunoblotted with appropriate antibodies. pUse vector and pUse-NF-E2 cDNA were transfected in HK-11 cells and effects of TGF-ß on JNK MAPK phosphorylation (pJNK) was examined. KEY FINDINGS: We demonstrated activation of p38, ERK, and JNK MAPK pathways in TGF-ß treated HK-11 cells. Dual p38 and ERK MAPK blockade prevented TGF-ß-induced pSer82Hsp27, fibronectin and connective tissue growth factor (CTGF) expression while preserving NF-E2 expression. Blockade of JNK MAPK inhibited TGF-ß-induced CTGF expression without preserving NF-E2 expression. MG132 treatment prevented TGF-ß-induced pJNK in HK-11 cells and in type 1 diabetic OVE26 mouse kidneys, demonstrating that TGF-ß- and diabetes-induced pJNK occurs downstream of proteasome activation. A direct role for NF-E2 in modulating pJNK activation was demonstrated by NF-E2 over-expression. SIGNIFICANCE: ERK and p38 MAPK promotes NF-E2 proteasomal degradation while proteasome activation promotes pJNK and profibrotic signaling in renal proximal tubule cells.


Assuntos
Túbulos Renais Proximais/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Subunidade p45 do Fator de Transcrição NF-E2/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Antracenos/farmacologia , Linhagem Celular Transformada , Inibidores de Cisteína Proteinase/farmacologia , Feminino , Fibrose , Humanos , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/patologia , Leupeptinas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Transgênicos
2.
FEBS Lett ; 594(19): 3156-3169, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32761920

RESUMO

Proteolytic processing is an important post-translational modification affecting protein activity and stability. In the current study, we investigate the N-terminal cleavage of Trop2, a protein which is overexpressed in many cancers. We demonstrate that Trop2 is cleaved at Arg87 by a transmembrane serine protease, matriptase. Homology modeling and site-directed mutagenesis of amino acids in close proximity to the matriptase cleavage site reveal the importance of Val194 in regulating Trop2 cleavage. Co-immunoprecipitation studies confirm that amino acid substitutions at Arg87, Thr88, Lys189, Val194, and His195 do not affect Trop2 dimerization. However, cleavage of wild-type Trop2 by matriptase is inhibited when it is allowed to dimerize with a V194 A mutant monomer, further confirming the role of Val194 in matriptase-mediated N-terminal cleavage.


Assuntos
Antígenos de Neoplasias/metabolismo , Arginina/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteólise , Serina Endopeptidases/metabolismo , Valina/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Simulação por Computador , Células HEK293 , Humanos , Mutação/genética , Multimerização Proteica , Homologia Estrutural de Proteína , Relação Estrutura-Atividade
3.
Life Sci ; 254: 117783, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32413404

RESUMO

AIMS: This study aimed to examine the anti-fibrotic role of Nuclear Factor-Erythroid derived 2 (NF-E2) in human renal tubule (HK-11) cells and in type 1 and type 2 diabetic (T1D, T2D) mouse kidneys. MAIN METHODS: Anti-fibrotic effects of NF-E2 were examined in transforming growth factor-ß (TGF-ß) treated HK-11 cells by over-expressing/silencing NF-E2 expression and determining its effects on profibrotic signaling. NF-E2 proteasomal degradation was confirmed by proteasome inhibition in HK-11 cells and diabetic mice. Clinical relevance of changes in NF-E2 expression to fibrotic changes in the kidney were assessed in T1D and T2D mouse kidneys. KEY FINDINGS: NF-E2 expression was significantly decreased in TGF-ß treated HK-11 cells and in kidneys of diabetic mice with concurrent increase in expression of fibrotic proteins. TGF-ß treatment of HK-11 cells did not inhibit NF-E2 mRNA expression, suggesting that the post-translational changes may contribute to NF-E2 protein degradation. The down-regulation of NF-E2 expression was attributed to its proteasomal degradation, as TGF-ß- and diabetes-induced NF-E2 down regulation was prevented by proteasome inhibitor treatment. In HK-11 cells TGF-ß treatment decreased E-cadherin expression and induced pSer82Hsp27/NF-E2 association, likely to promote NF-E2 degradation, as Hsp27 can target proteins to the proteasome. A critical role for NF-E2 in regulation of renal fibrosis was demonstrated as over-expression of NF-E2 or silencing NF-E2 expression, decreased or increased profibrotic proteins in TGF-ß-treated HK-11 cells, respectively. SIGNIFICANCE: NF-E2, a novel anti-fibrotic protein, is down-regulated in diabetic kidneys. Preserving/inducing NF-E2 expression in diabetic kidneys may provide a therapeutic potential to combat DN.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Fibrose/fisiopatologia , Subunidade p45 do Fator de Transcrição NF-E2/fisiologia , Animais , Caderinas/biossíntese , Células Cultivadas , Inibidores de Cisteína Proteinase/farmacologia , Diabetes Mellitus Experimental/genética , Regulação para Baixo , Fibrose/metabolismo , Técnicas de Silenciamento de Genes , Proteínas de Choque Térmico HSP27/metabolismo , Humanos , Rim/metabolismo , Túbulos Renais/metabolismo , Leupeptinas/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Subunidade p45 do Fator de Transcrição NF-E2/biossíntese , Subunidade p45 do Fator de Transcrição NF-E2/genética , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/efeitos adversos , Fator de Crescimento Transformador beta/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...