Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; : 101639, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38959887

RESUMO

Environmental enteric dysfunction (EED) is a condition associated with malnutrition that can progress to malabsorption and villous atrophy. Severe EED results in linear growth stunting, slowed neurocognitive development, and unresponsiveness to oral vaccines. Prenatal exposure to malnutrition and breast feeding by malnourished mothers replicates EED. Pups are characterized by deprivation of secretory IgA (SIgA) and altered development of the gut immune system and microbiota. Extracellular ATP (eATP) released by microbiota limits T follicular helper (Tfh) cell activity and SIgA generation in Peyer's patches (PPs). Administration of a live biotherapeutic releasing the ATP-degrading enzyme apyrase to malnourished pups restores SIgA levels and ameliorates stunted growth. SIgA is instrumental in improving the growth and intestinal immune competence of mice while they are continuously fed a malnourished diet. The analysis of microbiota composition suggests that amplification of endogenous SIgA may exert a dominant function in correcting malnourishment dysbiosis and its consequences on host organisms, irrespective of the actual microbial ecology.

2.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38323486

RESUMO

Nontransgenic New Genomic Techniques (NGTs) have emerged as a promising tool for food industries, allowing food cultures to contribute to an innovative, safe, and more sustainable food system. NGTs have the potential to be applied to microorganisms, delivering on challenging performance traits like texture, flavour, and an increase of nutritional value. This paper brings insights on how nontransgenic NGTs applied to food cultures could be beneficial to the sector, enabling food industries to generate innovative, safe, and sustainable products for European consumers. Microorganisms derived from NGTs have the potentials of becoming an important contribution to achieve the ambitious targets set by the European 'Green Deal' and 'Farm to Fork' policies. To encourage the development of NGT-derived microorganisms, the current EU regulatory framework should be adapted. These technologies allow the introduction of a precise, minimal DNA modification in microbial genomes resulting in optimized products carrying features that could also be achieved by spontaneous natural genetic evolution. The possibility to use NGTs as a tool to improve food safety, sustainability, and quality is the bottleneck in food culture developments, as it currently relies on lengthy natural evolution strategies or on untargeted random mutagenesis.


Assuntos
Indústria Alimentícia , Genômica , Mutagênese
3.
Methods Mol Biol ; 2601: 303-312, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36445591

RESUMO

A strategy that can be applied to the research of new molecules with antibacterial activity is to look for inhibitors of essential bacterial processes within large collections of chemically heterogeneous compounds. The implementation of this approach requires the development of assays aimed at the identification of molecules interfering with specific cell pathways that can also be used in high-throughput analysis of large chemical libraries. Here, we describe a fluorescence-based whole-cell assay in Escherichia coli devised to find inhibitors of the translation initiation pathway. Translation is a complex and essential mechanism. It involves numerous sub-steps performed by factors that are in many cases sufficiently dissimilar in bacterial and eukaryotic cells to be targetable with domain-specific drugs. As a matter of fact, translation has been proven as one of the few bacterial mechanisms pharmacologically tractable with specific antibiotics. The assay described in this updated chapter is tailored to the identification of molecules affecting the first stage of translation initiation, which is the most dissimilar step in bacteria versus mammals. The effect of the compounds under analysis is measured in living cells, thus allowing evaluation of their in vivo performance as inhibitors of translation initiation. Compared with other assays for antibacterials, the major advantages of this screen are its simplicity, high mechanism specificity, and amenability to scaling up to high-throughput analyses.


Assuntos
Bactérias , Corantes , Animais , Antibacterianos/farmacologia , Células Eucarióticas , Bioensaio , Escherichia coli , Mamíferos
4.
Cell Rep ; 40(3): 111112, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858559

RESUMO

Secretory immunoglobulin A (SIgA) interaction with commensal bacteria conditions microbiota composition and function. However, mechanisms regulating reciprocal control of microbiota and SIgA are not defined. Bacteria-derived adenosine triphosphate (ATP) limits T follicular helper (Tfh) cells in the Peyer's patches (PPs) via P2X7 receptor (P2X7R) and thereby SIgA generation. Here we show that hydrolysis of extracellular ATP (eATP) by apyrase results in amplification of the SIgA repertoire. The enhanced breadth of SIgA in mice colonized with apyrase-releasing Escherichia coli influences topographical distribution of bacteria and expression of genes involved in metabolic versus immune functions in the intestinal epithelium. SIgA-mediated conditioning of bacteria and enterocyte function is reflected by differences in nutrient absorption in mice colonized with apyrase-expressing bacteria. Apyrase-induced SIgA improves intestinal homeostasis and attenuates barrier impairment and susceptibility to infection by enteric pathogens in antibiotic-induced dysbiosis. Therefore, amplification of SIgA by apyrase can be leveraged to restore intestinal fitness in dysbiotic conditions.


Assuntos
Apirase , Imunoglobulina A Secretora , Trifosfato de Adenosina/metabolismo , Animais , Bactérias/metabolismo , Homeostase , Imunoglobulina A Secretora/metabolismo , Mucosa Intestinal/metabolismo , Intestinos , Camundongos , Nódulos Linfáticos Agregados
5.
Front Microbiol ; 12: 744458, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566945

RESUMO

Interfering with the ability of pathogenic bacteria to import glucose may represent a new promising antibacterial strategy, especially for the treatment of infections occurring in diabetic and other hyperglycemic patients. Such patients are particularly susceptible to infections caused by a variety of bacteria, among which opportunistic pathogens like Pseudomonas aeruginosa. In P. aeruginosa, glucose can be directly imported into the cytoplasm or after its periplasmic oxidation into gluconate and 2-ketogluconate (2-KG). We recently demonstrated that a P. aeruginosa mutant lacking the 2-KG transporter KguT is less virulent than its kguT + parental strain in an insect infection model, pointing to 2-KG branch of glucose utilization as a possible target for anti-Pseudomonas drugs. In this work, we devised an experimental protocol to find specific inhibitors of the 2-KG pathway of P. aeruginosa glucose utilization and applied it to the screening of the Prestwick Chemical Library. By exploiting mutants lacking genes involved in the transport of glucose derivatives in the primary screening and in the secondary assays, we could identify sanguinarine as an inhibitor of 2-KG utilization. We also demonstrated that sanguinarine does not prevent 2-KG formation by gluconate oxidation or its transport, suggesting that either KguD or KguK is the target of sanguinarine in P. Aeruginosa.

6.
Sci Rep ; 8(1): 16912, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30442901

RESUMO

Pseudomonas spp. are endowed with a complex pathway for glucose uptake that relies on multiple transporters. In this work we report the construction and characterization of Pseudomonas aeruginosa single and multiple mutants with unmarked deletions of genes encoding outer membrane (OM) and inner membrane (IM) proteins involved in glucose uptake. We found that a triple ΔgltKGF ΔgntP ΔkguT mutant lacking all known IM transporters (named GUN for Glucose Uptake Null) is unable to grow on glucose as unique carbon source. More than 500 genes controlling both metabolic functions and virulence traits show differential expression in GUN relative to the parental strain. Consistent with transcriptomic data, the GUN mutant displays a pleiotropic phenotype. Notably, the genome-wide transcriptional profile and most phenotypic traits differ between the GUN mutant and the wild type strain irrespective of the presence of glucose, suggesting that the investigated genes may have additional roles besides glucose transport. Finally, mutants carrying single or multiple deletions in the glucose uptake genes showed attenuated virulence relative to the wild type strain in Galleria mellonella, but not in Caenorhabditis elegans infection model, supporting the notion that metabolic functions may deeply impact P. aeruginosa adaptation to specific environments found inside the host.


Assuntos
Pleiotropia Genética , Glucose/metabolismo , Modelos Biológicos , Mutação/genética , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Animais , Biofilmes/efeitos dos fármacos , Caenorhabditis elegans/microbiologia , Carbono/farmacologia , Modelos Animais de Doenças , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Bacterianos , Mariposas/microbiologia , Oligopeptídeos/metabolismo , Oxirredução , Fenótipo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Piocianina/metabolismo , Percepção de Quorum/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Transcriptoma/genética , Virulência
7.
J Biomol Screen ; 20(5): 627-33, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25586496

RESUMO

The bacterial translational apparatus is an ideal target for the search of new antibiotics. In fact, it performs an essential process carried out by a large number of potential subtargets for antibiotic action. Moreover, it is sufficiently different in several molecular details from the apparatus of Eukarya and Archaea to generally ensure specificity for the bacterial domain. This applies in particular to translation initiation, which is the most different step in the process. In bacteria, the 30S ribosomal subunit directly binds to the translation initiation region, a site within the messenger RNA (mRNA) 5'-untranslated region (5'-UTR). 30S binding is mediated by the interaction of both the 16S ribosomal RNA and the ribosomal protein S1 with specific regions of the mRNA 5'-UTR. An alternative, S1-independent pathway is enjoyed by leaderless mRNAs (i.e., transcripts devoid of a 5'-UTR). We have developed a simple fluorescence-based whole-cell assay in Escherichia coli to find inhibitors of the canonical S1-dependent translation initiation pathway. The assay has been set up both in a common E. coli laboratory strain and in a strain with an outer membrane permeability defect. Compared with other whole-cell assays for antibacterials, the major advantages of the screen described here are high sensitivity and specificity.


Assuntos
Antibacterianos/farmacologia , Descoberta de Drogas/métodos , Testes de Sensibilidade Microbiana/métodos , Iniciação Traducional da Cadeia Peptídica/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Expressão Gênica , Genes Reporter , Ensaios de Triagem em Larga Escala , Sensibilidade e Especificidade , Bibliotecas de Moléculas Pequenas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...