Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Exp Toxicol ; 43: 9603271241232609, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38320548

RESUMO

Adipose tissue is the main organ that stores lipids and it plays important roles in metabolic balance in the body. We recently reported in Human and Experimental Toxicology that the combined exposure to BPA and fructose may interfere with energy metabolism of adipose tissue. However, it is still unclear whether the combined exposure to BPA and fructose has the possibility to induce lipid remodeling in adipose tissue. In the present study, we performed a widely targeted quantitative lipidomic analysis of the adipose tissue of rats after 6 months of BPA and fructose combined exposure. We totally determined 734 lipid molecules in the adipose tissue of rats. Principal component analysis (PCA) showed the group of the combined exposure to higher-dose (25 µg/kg every other day) BPA and fructose can be distinguished from the groups of control, higher-dose BPA exposure and fructose exposure clearly. Partial least squares-discriminant analysis (PLS-DA) and univariate statistical analysis displayed lipids of PC(18:0_ 20:3), TG(8:0_14:0_16:0), TG(12:0_14:0_16:1), TG(10:0_16:0_16:1), TG(12:0_ 14:0_18:1), TG(14:0_ 16:0_16:1), TG(14:0_14:1_16:1), TG(8:0_ 16:1_16:2), TG(14:1_16:1_ 16:1), TG(16:1_18:1_18:1), TG(16:0_16:1_20:4) and TG(15:0_18:1_ 24:1) may contributed the most to the discrimination. These findings indicated that combined exposure to BPA and fructose has the potential to cause lipid remodeling in adipose tissue.


Assuntos
Frutose , Lipidômica , Fenóis , Humanos , Ratos , Animais , Frutose/metabolismo , Tecido Adiposo , Compostos Benzidrílicos/farmacologia , Lipídeos , Metabolismo dos Lipídeos
2.
Sci Rep ; 13(1): 22704, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38123624

RESUMO

The consumption of fructose has increased dramaticly during the last few decades, inducing a great increase in the risk of intrahepatic lipid accumulation, hypertriglyceridemia, hyperuricemia and cancer. However, the underlying mechanism has not yet been fully elucidated. Amino acid metabolism may play an important role in the process of the diseases caused by fructose, but there is still a lack of corresponding evidence. In present study, we provide an evidence of how fructose affects amino acids metabolism in 1895 ordinary residents in Chinese community using UPLC-QqQMS based amino acid targeted metabolomics and the underlying mechanism of fructose exposure how interferes with amino acid metabolism related genes and acetylated modification of proteome in the liver of rats model. We found people with high fructose exposure had higher levels of Asa, EtN, Asp, and Glu, and lower levels of 1MHis, PEtN, Arg, Gln, GABA, Aad, Hyl and Cys. The further mechanism study displayed amino acid metabolic genes of Aspa, Cndp1, Dbt, Dmgdh, and toxic metabolites such as N-acetylethanolamines accumulation, interference of urea cycle, as well as acetylated modification of key enzymes in glutamine metabolic network and glutamine derived NEAAs synthesis pathway in liver may play important roles in fructose caused reprogramming in amino acid metabolism. This research provides novel insights of the mechanism of amino acid metabolic disorder caused by fructose and supplies new targets for clinical therapy.


Assuntos
Frutose , Glutamina , Humanos , Ratos , Animais , Glutamina/metabolismo , Frutose/efeitos adversos , Multiômica , Aminoácidos , China
3.
Hum Exp Toxicol ; 42: 9603271231217992, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37990541

RESUMO

Background: Adipose tissue is a dynamic endocrine organ that plays a key role in regulating metabolic homeostasis. Previous studies confirmed that bisphenol A (BPA) or fructose can interfere with the function of adipose tissue. Nonetheless, knowledge on how exposure to BPA and fructose impacts energy metabolism in adipose tissue remains limited.Purpose: To determine impact of combined chronic exposure to low-dose bisphenol A and fructose on serum adipocytokines and the energy target metabolome in white adipose tissue.Method: 57 energy metabolic intermediates in adipose tissue and 7 adipocytokines in serum from Sprague Dawley rats were examined after combined exposure to two levels of BPA (lower dose: 0.25, and higher dose: 25 µg/kg every other day) and 5% fructose for 6 months.Results: combined exposure to lower-dose BPA and fructose significantly increased omentin-1, pyruvic acid, adenosine triphosphate (ATP), adenosine monophosphate (AMP), inosine monophosphate (IMP), inosine, and l-lactate; however, these parameters were not significantly affected by higher-dose BPA combined with fructose. Interestingly, the level of succinate (an intermediate of the citric acid cycle) increased dose-dependently in adipose tissue, and the level of apelin 13 (a versatile adipocytokine) decreased dose-dependently in serum after combined exposure to BPA and fructose. Phosphoenolpyruvic acid, phenyl-lactate, and ornithine were significantly correlated with asprosin, omentin-1, apelin, apelin 13, and adiponectin, while l-tyrosine was significantly correlated with irisin and a-FABP under combined exposure to BPA and fructose.Conclusions: these findings indicated that lower-dose BPA combined with fructose could amplify the impact on glycolysis, energy storage, and purine nucleotide biosynthesis in adipose tissue, and adipocytokines, such as omentin-1 and apelin 13, may be related to metabolic interference induced by BPA and fructose exposure.


Assuntos
Adipocinas , Frutose , Ratos , Animais , Frutose/metabolismo , Ratos Sprague-Dawley , Apelina/metabolismo , Tecido Adiposo/metabolismo , Compostos Benzidrílicos/toxicidade , Tecido Adiposo Branco/metabolismo , Metaboloma , Lactatos/metabolismo
4.
Metabolomics ; 14(4): 45, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30830327

RESUMO

INTRODUCTION: Bisphenol A (BPA), 2,2-bis(4-hydroxyphenyl) propane, a common industrial chemical which has extremely huge production worldwide, is ubiquitous in the environment. Human have high risk of exposing to BPA and the health problems caused by BPA exposure have aroused public concern. However, the biomarkers for BPA exposure are lacking. As a rapidly developing subject, metabolomics has accumulated a large amount of valuable data in various fields. The secondary application of published metabolomics data could be a very promising field for generating novel biomarkers whilst further understanding of toxicity mechanisms. OBJECTIVES: To summarize the published literature on the use of metabolomics as a tool to study BPA exposure and provide a systematic perspectives of current research on biomarkers screening of BPA exposure. METHODS: We conducted a systematic search of MEDLINE (PubMed) up to the end of June 25, 2017 with the key term combinations of 'metabolomics', 'metabonomics', 'mass spectrometry', 'nuclear magnetic spectroscopy', 'metabolic profiling' and 'amino acid profile' combined with 'BPA exposure'. Additional articles were identified through searching the reference lists from included studies. RESULTS: This systematic review included 15 articles. Intermediates of glycolysis, Krebs cycle, ß oxidation of long chain fatty acids, pentose phosphate pathway, nucleoside metabolism, branched chain amino acid metabolism, aromatic amino acids metabolism, sulfur-containing amino acids metabolism were significantly changed after BPA exposure, suggesting BPA had a highly complex toxic effects on organism which was consistent with existing studies. The biomarkers most consistently associated with BPA exposure were lactate and choline. CONCLUSION: Existing metabolomics studies of BPA exposure present heterogeneous findings regarding metabolite profile characteristics. We need more evidence from target metabolomics and epidemiological studies to further examine the reliability of these biomarkers which link to low, environmentally relevant, exposure of BPA in human body.


Assuntos
Compostos Benzidrílicos/farmacologia , Biomarcadores/metabolismo , Metabolômica , Fenóis/farmacologia , Compostos Benzidrílicos/administração & dosagem , Humanos , Fenóis/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...