Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Metastasis Rev ; 42(3): 741-764, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36547748

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common cancers with a relatively high cancer-related mortality. The uncontrolled proliferation of HCC consumes a significant amount of oxygen, causing the development of a hypoxic tumor microenvironment (TME). Hypoxia-inducible factors (HIFs), crucial regulators in the TME, activate several cancer hallmarks leading to the hepatocarcinogenesis of HCC and resistance to current therapeutics. As such, HIFs and their signaling pathways have been explored as potential therapeutic targets for the future management of HCC. This review discusses the current understanding of the structure and function of HIFs and their complex relationship with the various cancer hallmarks. To address tumor hypoxia, this review provides an insight into the various potential novel therapeutic agents for managing HCC, such as hypoxia-activated prodrugs, HIF inhibitors, nanomaterials, antisense oligonucleotides, and natural compounds, that target HIFs/hypoxic signaling pathways in HCC. Because of HCC's relatively high incidence and mortality rates in the past decades, greater efforts should be put in place to explore novel therapeutic approaches to improve the outcome for HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Hipóxia , Transdução de Sinais , Hipóxia Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/uso terapêutico , Linhagem Celular Tumoral , Microambiente Tumoral
2.
Int J Mol Sci ; 22(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34681659

RESUMO

The design and development of a small molecule named NPB [3-{(4(2,3-dichlorophenyl)piperazin-1-yl}{2-hydroxyphenyl)methyl}-N-cyclopentylbenzamide], which specifically inhibited the phosphorylation of BAD at Ser99 in human carcinoma cells has been previously reported. Herein, the synthesis, characterization, and effect on cancer cell viability of NPB analogs, and the single-crystal X-ray crystallographic studies of an example compound (4r), which was grown via slow-solvent evaporation technique is reported. Screening for loss of viability in mammary carcinoma cells revealed that compounds such as 2[(4(2,3-dichlorophenyl)piperazin-1-yl][naphthalen-1-yl]methyl)phenol (4e), 5[(4(2,3-dichlorophenyl)piperazin-1-yl][2-hydroxyphenyl)methyl)uran-2-carbaldehyde (4f), 3[(2-hydroxyphenyl][4(p-tolyl)piperazin-1-yl)methyl)benzaldehyde (4i), and NPB inhibited the viability of MCF-7 cells with IC50 values of 5.90, 3.11, 7.68, and 6.5 µM, respectively. The loss of cell viability was enhanced by the NPB analogs synthesized by adding newer rings such as naphthalene and furan-2-carbaldehyde in place of N-cyclopentyl-benzamide of NPB. Furthermore, these compounds decreased Ser99 phosphorylation of hBAD. Additional in silico density functional theory calculations suggested possibilities for other analogs of NPB that may be more suitable for further development.


Assuntos
Nitrobenzenos/química , Proteína de Morte Celular Associada a bcl/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cristalografia por Raios X , Teoria da Densidade Funcional , Feminino , Humanos , Células MCF-7 , Conformação Molecular , Nitrobenzenos/farmacologia , Fosforilação/efeitos dos fármacos , Serina/metabolismo
3.
Anticancer Agents Med Chem ; 17(14): 1931-1941, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28403784

RESUMO

BACKGROUND: Quinazolines are a big family of heterocyclic compounds with anti-cancer properties. OBJECTIVE: The latest investigation was on synthesis, characterization of novel 4-anilinoquinazoline derivatives for their anti-angiogenic effect. METHOD: A series of novel 4-anilino-6,7-dimethoxy quinazoline derivatives were synthesized and characterized using 1H, 13C NMR, FT-IR and LC-MS techniques. Cytotoxicity assays were performed for all compounds against different cell lines such as Human colon carcinoma (HCT116), Human chronic myeloid leukemia (K562) and Human breast cancer (SKBR3) cell lines using 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyl tetrazolium Bromide (MTT), Trypan blue and Lactose dehydrogenase release assay. The selected compounds were evaluated for their anti-tumor and anti-angiogenic effect on EAC tumor model. The molecular docking studies were drawn using maestro 2D sketcher and energy minimize was compounded by OPLS 2005. RESULTS: Among all compounds, RB4 and RB7 showed moderate activity whereas RB1 showed most potent activity comparable with that of the standard drug cisplatin against all three cell lines. RB1 also inhibited the proliferation of tumor cells in three different cell lines. Further, in-vivo studies revealed that RB1 significantly reduced secretion of ascites, tumor cell proliferation and increased the life span of tumor bearing mice. The antiangiogenic effect of RB1 was revealed from the reduced vessel sprouting in the peritoneum region of treated mice and induced avascular zone in chorioallantoic membrane (CAM) model. The insilco molecular docking studies clearly demonstrate the dual inhibitory potential of RB1 against VEGFR-2 and EGFR from binding to the active site of its receptors. CONCLUSION: However these studies clearly show that RB1 might be a potent antitumor and anti-angiogenic agent representing a promising lead for further optimization and elucidation of the mechanism of action.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Quinazolinas/farmacologia , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Inibidores da Angiogênese/síntese química , Inibidores da Angiogênese/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Simulação de Acoplamento Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Quinazolinas/síntese química , Quinazolinas/química , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Células Tumorais Cultivadas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
4.
Inflammation ; 39(1): 269-280, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26363638

RESUMO

The products of arachidonic acid metabolism by lipoxygenase (LOX) and cyclooxygenase (COX) significantly contribute to inflammation and carcinogenesis. Particularly, overproduction of leukotrienes and prostaglandins contribute to tumor growth by inducing formation of new blood vessels that sustain tumor cell viability and growth. Hence, search for novel anticancer drug via inhibition of LOX and COX enzymes constitutes an impressive strategy till date. In this context, a series of isoxazole derivatives were synthesized and screened for their anti-inflammatory activity via LOX and COX inhibition. Among these, 3-(3-methylthiophen-2-yl)-5-(3,4,5-trimethoxyphenyl)isoxazole (2b) showed significant inhibitory activity toward LOX and COX-2. Additionally, 2b showed a good inhibition of tumor growth, peritoneal angiogenesis, and ascite formation in Ehrlich ascites carcinoma (EAC) cell mouse model. Further, the in silico molecular studies also revealed that the compound 2b binds to the catalytic domain of LOX and COX-1 and COX-2 strongly with high atomic contact energy (ACE) score compared to standard drug. These initial pharmacological data support the fact that the compound 2b serves as the basis in developing anti-inflammatory and anticancer agents.


Assuntos
Inibidores da Angiogênese/farmacologia , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Carcinoma de Ehrlich/tratamento farmacológico , Inibidores de Ciclo-Oxigenase 2/farmacologia , Isoxazóis/farmacologia , Inibidores de Lipoxigenase/farmacologia , Tiofenos/farmacologia , Animais , Sítios de Ligação/efeitos dos fármacos , Domínio Catalítico/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Células HeLa , Humanos , Inflamação/tratamento farmacológico , Lipoxigenase/metabolismo , Camundongos , Simulação de Acoplamento Molecular
5.
Bioorg Med Chem Lett ; 25(15): 2931-6, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26048794

RESUMO

In the present study, we used solution combustion synthesis-bismuth oxide (Bi2O3) as catalyst for the simple and efficient synthesis of 1,2-oxazine based derivatives of 6-fluoro-3-(piperidin-4-yl)benzo[d]isoxazoles, 1-arylpiperazine and carbazoles. (4aR,8aR)-4-(4-Methoxyphenyl)-3-((4-(4-methoxyphenyl)piperazin-1-yl)methyl)-4a,5,6,7,8,8a-hexahydro-4H-benzo[e][1,2]oxazine was found to be the most potent compound with a high degree of selectivity in inhibition towards COX2 (1.7 µM) over COX1 (40.4 µM) demonstrating the significance of 1,2-oxazine derivatives in developing COX2 specific inhibitors. Molecular docking analyses demonstrated that an isoleucine residue in the active site of COX1 is responsible for lower affinity to COX1 and increased potency towards COX2. Overall, our study reveals that the new 1,2-oxazine-based small molecules qualify as lead structures in developing COX2-specific inhibitors for anti-inflammatory therapy.


Assuntos
Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/imunologia , Oxazinas/química , Oxazinas/farmacologia , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/síntese química , Humanos , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Inflamação/imunologia , Simulação de Acoplamento Molecular , Oxazinas/síntese química
6.
Bioorg Med Chem Lett ; 25(12): 2589-93, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25920563

RESUMO

Cancer is a leading cause of death in developed countries and second cause in developing countries. Herein we are reporting the synthesis of novel bisbenzimidazole derivatives and their anticancer properties. Among the newly synthesized bisbenzimidazoles, 3-(4-flurophenylsulfonyl)-1,7-dimethyl-2-propyl-1H,3H-2,5-bibenzo[d]imidazole (FDPB) presented as a potent antiproliferative agent against HeLa, HCT116 and A549 cells with selectivity over normal Vero cells (IC50 >50 µM). Additionally, we evaluated the efficacy of lead compound against Ehrlich ascites tumor (EAT) bearing mice for its antitumor and antiangiogenic properties. Our lead compound significantly reduced the cell viability, body weight, ascites volume and downregulated the formation of neovasculature and production of Vascular Endothelial Growth Factor (VEGF).


Assuntos
Inibidores da Angiogênese/síntese química , Antineoplásicos/síntese química , Bisbenzimidazol/química , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ascite , Bisbenzimidazol/farmacologia , Bisbenzimidazol/uso terapêutico , Peso Corporal/efeitos dos fármacos , Carcinoma de Ehrlich/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Regulação para Baixo/efeitos dos fármacos , Células HCT116 , Células HeLa , Humanos , Camundongos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Vero
7.
J Biol Chem ; 289(46): 31879-31890, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25231984

RESUMO

TNF is a pleotropic cytokine known to be involved in the progression of several pro-inflammatory disorders. Many therapeutic agents have been designed to counteract the effect of TNF in rheumatoid arthritis as well as a number of cancers. In the present study we have synthesized and evaluated the anti-cancer activity of novel biscoumarins in vitro and in vivo. Among new compounds, BIHC was found to be the most cytotoxic agent against the HepG2 cell line while exhibiting less toxicity toward normal hepatocytes. Furthermore, BIHC inhibited the proliferation of various hepatocellular carcinoma (HCC) cells in a dose- and time-dependent manner. Subsequently, using in silico target prediction, BIHC was predicted as a TNF blocker. Experimental validation was able to confirm this hypothesis, where BIHC could significantly inhibit the recombinant mouse TNF-α binding to its antibody with an IC50 of 16.5 µM. Furthermore, in silico docking suggested a binding mode of BIHC similar to a ligand known to disrupt the native, trimeric structure of TNF, and also validated with molecular dynamics simulations. Moreover, we have demonstrated the down-regulation of p65 phosphorylation and other NF-κB-regulated gene products upon BIHC treatment, and on the phenotypic level the compound shows inhibition of CXCL12-induced invasion of HepG2 cells. Also, we demonstrate that BIHC inhibits infiltration of macrophages to the peritoneal cavity and suppresses the activity of TNF-α in vivo in mice primed with thioglycollate broth and lipopolysaccharide. We comprehensively validated the TNF-α inhibitory efficacy of BIHC in an inflammatory bowel disease mice model.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Cumarínicos/química , Neoplasias Hepáticas/tratamento farmacológico , Fator de Necrose Tumoral alfa/química , Animais , Anti-Inflamatórios/química , Carcinoma Hepatocelular/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Desenho de Fármacos , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Inflamação , Doenças Inflamatórias Intestinais/metabolismo , Concentração Inibidora 50 , Neoplasias Hepáticas/metabolismo , Espectroscopia de Ressonância Magnética , Camundongos , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Ligação Proteica , Transdução de Sinais , Ressonância de Plasmônio de Superfície
8.
Biochem Biophys Res Commun ; 438(1): 198-204, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23880341

RESUMO

Melatonin is a pineal hormone that regulates circadian and seasonal rhythms. The chronobiotic role of melatonin corresponds with a repertoire of pharmacological properties. Besides, it has a wide range of therapeutic applications. However, recent studies have demonstrated its direct interaction with platelets: at physiological concentration it promotes platelet aggregation; on the other hand, at pharmacological doses it raises intracellular Ca(2+) leading to platelet activation, thrombus formation and cardiovascular disorders. In order to further probe its effects on platelets, the current study targeted platelet apoptosis and melatonin was found to stimulate apoptosis. The mitochondrial pathway of apoptosis was mainly investigated because of its susceptibility to oxidative stress-inducing factors including therapeutic and dietary elements. Melatonin significantly increased the generation of intracellular ROS and Ca(2+), facilitating mitochondrial membrane depolarization, cytochrome c release, caspase activation, protein phosphorylation and phosphatidylserine externalization. Further, the overall toxicity of melatonin on platelets was confirmed by MTT and lactate dehydrogenase assays. The elevated rate of platelet apoptosis has far reaching consequences including thrombocytopenia. Besides, platelets undergoing apoptosis release microparticles, which fuel thrombus formation and play a significant role in the pathophysiology of a number of diseases. In many parts of the world melatonin is an over-the-counter dietary supplement and alternative medicine. Since, melatonin displays platelet proapoptotic effect at a concentration attainable through therapeutic dosage, the present study sends a warning signal to the chronic use of melatonin as a therapeutic drug and questions its availability without a medical prescription.


Assuntos
Apoptose/efeitos dos fármacos , Plaquetas/fisiologia , Peróxido de Hidrogênio/metabolismo , Melatonina/toxicidade , Mitocôndrias/fisiologia , Mitofagia/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Apoptose/fisiologia , Plaquetas/efeitos dos fármacos , Plaquetas/ultraestrutura , Células Cultivadas , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Mitofagia/efeitos dos fármacos
9.
Med Chem ; 9(2): 240-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22779789

RESUMO

A series of novel 3-(2-chloroethyl)-2-methyl-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidin-4-one aliphatic/ aromatic/ heterocyclic amine derivatives were synthesized in good yield. The synthesized compounds were characterized by 1H-NMR, FTIR and elemental analysis. All the synthesized compounds were screened for their in vitro antibacterial activity by agar well diffusion and micro dilution method against standard strains of Gram-Positive (Bacillus Subtilis MTCC 121 and Staphylococcus epidermidis 435), and Gram-negative (Xanthomonas Campestris 7903 and Pseudomonas aeruginosa MTCC 7908) bacteria. Compounds with substituted heterocyclic piperazine moiety showed good activity. In particular, compound 6i showed two fold better activity compared to the standard drug Strepyomycin sulphate.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Pirimidinonas/síntese química , Pirimidinonas/farmacologia , Aminas/química , Antibacterianos/química , Técnicas de Química Sintética , Testes de Sensibilidade Microbiana , Pirimidinonas/química
10.
BMC Chem Biol ; 12: 5, 2012 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23033888

RESUMO

BACKGROUND: Dibenzoazepine (DB) derivatives are important and valuable compounds in medicinal chemistry. The synthesis and chemotherapeutic properties of naturally occurring DBs and different heterocyclic moiety tethered DBs are reported. Herein, we report the DB-fused hybrid structure that containing isoxazolines (DBIs) and their anti-cancer activity, which could throw light on the structural and functional features of new molecules. RESULTS AND CONCLUSION: The synthesis and characterization of novel ring DB tethered isoxazoline derivatives (DBIs) were carried out. After the detailed structural characterization using 2D-NMR experiments, the compounds were identified as 5-substituted isoxazolines. The effect of newly synthesized DBIs against the invasion of murine osteosarcoma (LM8G7) cells was studied. Among the tested molecules, compound 4g (5-[-3-(4-chlorophenyl)-4,5-dihydroisoxazol-5-yl-methyl]-5 H-dibenzo[b,f]azepine), was found to inhibit the invasion of LM8G7 cells strongly, when compared to other structurally related compounds. Cumulatively, the compound 4g inhibited the invasion MDA-MB-231 cells completely at 10 µM. In addition to anti-invasion property the compound 4g also inhibited the migration of LM8G7 and human ovarian cancer cells (OVSAHO) dose-dependently. Compound 4g inhibited the proliferation of LM8G7, OVSAHO, human breast cancer cells (MCF-7) and human melphalan-resistant multiple myeloma (RPMI8226-LR5) cells that are comparable to cisplatin and suramin.

11.
Basic Clin Pharmacol Toxicol ; 109(4): 292-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21729242

RESUMO

Viper envenomation undeniably induces brutal local manifestations such as haemorrhage, oedema and necrosis involving massive degradation of extracellular matrix at the bitten region and many a times results in dangerous systemic haemorrhage including pulmonary shock. Snake venom metalloproteases (SVMPs) are being considered to be the primary culprits for the venom-induced haemorrhage. As a consequence, the venom researchers and medical practitioners are in deliberate quest of SVMP inhibitors. In this study, we evaluated the inhibitory effect of 1-(3-dimethylaminopropyl)-1-(4-fluorophenyl)-3-oxo-1,3-dihydroisobenzofuran-5-carbonitrile (DFD) on viper venom-induced haemorrhagic and PLA(2) activities. DFD effectively neutralized the haemorrhagic activity of the medically important viper venoms such as Echis carinatus, Echis ocelatus, Echis carinatus sochureki, Echis carinatus leakeyi and Crotalus atrox in a dose-dependent manner. The histological examinations revealed that the compound DFD effectively neutralizes the basement membrane degradation, and accumulation of inflammatory leucocytes at the site of Echis carinatus venom injection further confirms the inhibition of haemorrhagic activity. In addition, DFD dose dependently inhibited the PLA(2) activities of Crotalus atrox and E. c. leakeyi venoms. According to the docking studies, DFD binds to hydrophobic pocket of SVMP with the ki of 19.26 × 10(-9) (kcal/mol) without chelating Zn(2+) in the active site. It is concluded that the clinically approved inhibitors of haemorrhagins could be used as a potent first-aid agent in snakebite management. Furthermore, a high degree of structural and functional homology between SVMPs and their relatives, the MMPs, suggests that DFD analogues may find immense value in the regulation of multifactorial pathological conditions like inflammation, cancer and wound healing.


Assuntos
Benzofuranos/farmacologia , Inibidores Enzimáticos/farmacologia , Hemorragia/tratamento farmacológico , Venenos de Víboras/antagonistas & inibidores , Animais , Citalopram/análogos & derivados , Relação Dose-Resposta a Droga , Eritrócitos/efeitos dos fármacos , Hemólise , Hemorragia/induzido quimicamente , Humanos , Masculino , Camundongos , Fosfolipases A/antagonistas & inibidores , Ligação Proteica , Pele/efeitos dos fármacos , Pele/patologia , Venenos de Víboras/enzimologia , Venenos de Víboras/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...