Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 36(15): e98, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18628294

RESUMO

The temperature induced melting transition of a self-complementary DNA strand covalently attached at the 5' end to the surface of a gold interdigitated microelectrode (GIME) was monitored in a novel, label-free, manner. The structural state of the hairpin was assessed by measuring four different electronic properties of the GIME (capacitance, impedance, dissipation factor and phase angle) as a function of temperature from 25 degrees C to 80 degrees C. Consistent changes in all four electronic properties of the GIME were observed over this temperature range, and attributed to the transition of the attached single-stranded DNA (ssDNA) from an intramolecular, folded hairpin structure to a melted ssDNA. The melting curve of the self-complementary single strand was also measured in solution using differential scanning calorimetry (DSC) and UV absorbance spectroscopy. Temperature dependent electronic measurements on the surface and absorbance versus temperature values measured in solution experiments were analyzed assuming a two-state process. The model analysis provided estimates of the thermodynamic transition parameters of the hairpin on the surface. Two-state analyses of optical melting data and DSC measurements provided evaluations of the thermodynamic transition parameters of the hairpin in solution. Comparison of surface and solution measurements provided quantitative evaluation of the effect of the surface on the thermodynamics of the melting transition of the DNA hairpin.


Assuntos
DNA de Cadeia Simples/química , Microeletrodos , Sondas de Oligonucleotídeos/química , Termodinâmica , Técnicas Biossensoriais , Varredura Diferencial de Calorimetria , Ouro/química , Desnaturação de Ácido Nucleico , Soluções , Espectrofotometria Ultravioleta , Temperatura
2.
J Nanosci Nanotechnol ; 8(5): 2419-21, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18572657

RESUMO

Diodes within individual silicon nanowires were fabricated by doping them during growth to produce p-n junctions. Electron beam lithography was then employed to contact p- and n-doped ends of these nanowires. The current-voltage (I-V) measurements showed diode-like characteristics with a typical threshold voltage (Vt) of about 1 V and an ideality factor (n) of about 3.6 in the quasi-neutral region. The reverse bias I-V measurement showed an exponential behavior, indicating tunneling as the current leakage mechanism.

3.
J Nanosci Nanotechnol ; 8(1): 457-60, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18468103

RESUMO

Si0.5Geo0.5 nanowires have been utilized to fabricate source-drain channels of p-type field effect transistors (p-FETs). These transistors were fabricated using two methods, focused ion beam (FIB) and electron beam lithography (EBL). The electrical analyses of these devices show field effect transistor characteristics. The boron-doped SiGe p-FETs with a high-k (HfO2) insulator and Pt electrodes, made via FIB produced devices with effective hole mobilities of about 50 cm2V(-1)s(-1). Similar transistors with Ti/Au electrodes made via EBL had effective hole mobilities of about 350 cm2V(-1)s(-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...