Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 10(8)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796559

RESUMO

In this work, we present the possibility of producing multiscale hierarchical micro/nanostructures by the femtosecond laser ablation of transition metals (i.e., Ta and W) in water and investigate their polarization-dependent reflectance. The hierarchical micro/nanostructures are composed of microscale-grooved, mountain-like and pit-rich structures decorated with hybrid laser-induced periodic surface structures (LIPSSs). The hybrid LIPSSs consist of low/high and ultrahigh spatial frequency LIPSSs (LSFLs/HSFLs and UHSFLs). LSFLs/HSFLs of 400-600 nm in a period are typically oriented perpendicular to the direction of the laser polarization, while UHSFLs (widths: 10-20 nm and periods: 30-50 nm) are oriented perpendicular to the curvatures of LSFLs/HSFLs. On the microstructures with height gradients, the orientations of LSFLs/HSFLs are misaligned by 18°. On the ablated W metasurface, two kinds of UHSFLs are observed. UHSFLs become parallel nanowires in the deep troughs of LSFLs/HSFLs but result in being very chaotic in shallow LSFLs, turning into polygonal nanonetworks. In contrast, chaotic USFLs are not found on the ablated Ta metasurfaces. With the help of Fourier transform infrared spectroscopy, it is found that microgrooves show an obvious polarization-dependent reflectance at wavelengths of 15 and 17.5 µm associated with the direction of the groove, and the integration of microstructures with LSFs/HSFLs/UHSFLs is thus beneficial for enhancing the light absorbance and light trapping in the near-to-mid-infrared (NIR-MIR) range.

2.
Sci Rep ; 9(1): 2656, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30804466

RESUMO

Plasmonic nanolens, a 3-dimensional tapered arrangement of metallic nanorod chains, holds a great promise as a new plasmonics-based optical nano-imaging technique. While multiple nanorod chains can transfer the near-field signal originating from a sample to an image at a distance larger than a micro-meter, where each nanorod chain contributes in forming one pixel in the image, the tapered arrangement of the nanorod chains with a certain taper angle allows image magnification. We experimentally demonstrate the feature of image formation and magnification in a nanolens by fabricating a tapered arrangement of two silver nanorod chains, which were separated by a distance smaller than the diffraction limit at one end and larger than the diffraction limit at the other end. We placed two nano-sized optical sources of quantum dots near the first ends of the chains, which served as two subwavelength objects. In the optical measurement, we demonstrated that the unresolved subwavelength optical sources could be imaged at the other ends of the chains and were well resolved in accordance with the magnification feature of a nanolens. This verification is an experimental proof of the image magnification, and an important step toward the realization of plasmonic nanolens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...