Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 928: 172452, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38615757

RESUMO

Greenhouse gas (GHG) fluxes from peatland soils are relatively well studied, whereas tree stem fluxes have received far less attention. Simultaneous year-long measurements of soil and tree stem GHG fluxes in northern peatland forests are scarce, as previous studies have primarily focused on the growing season. We determined the seasonal dynamics of tree stem and soil CH4, N2O and CO2 fluxes in a hemiboreal drained peatland forest. Gas samples for flux calculations were manually collected from chambers at different heights on Downy Birch (Betula pubescens) and Norway Spruce (Picea abies) trees (November 2020-December 2021) and analysed using gas chromatography. Environmental parameters were measured simultaneously with fluxes and xylem sap flow was recorded during the growing season. Birch stems played a greater role in the annual GHG dynamics than spruce stems. Birch stems were net annual CH4, N2O and CO2 sources, while spruce stems constituted a CH4 and CO2 source but a N2O sink. Soil was a net CO2 and N2O source, but a sink of CH4. Temporal dynamics of stem CH4 and N2O fluxes were driven by isolated emissions' peaks that contributed significantly to net annual fluxes. Stem CO2 efflux followed a seasonal trend coinciding with tree growth phenology. Stem CH4 dynamics were significantly affected by the changes between wetter and drier periods, while N2O was more influenced by short-term changes in soil hydrologic conditions. We showed that CH4 emitted from tree stems during the wetter period can offset nearly half of the soil sink capacity. We presented for the first time the relationship between tree stem GHG fluxes and sap flow in a peatland forest. The net CH4 flux was likely an aggregate of soil-derived and stem-produced CH4. A dominating soil source was more evident for stem N2O fluxes.


Assuntos
Betula , Monitoramento Ambiental , Florestas , Gases de Efeito Estufa , Metano , Solo , Gases de Efeito Estufa/análise , Solo/química , Metano/análise , Estações do Ano , Dióxido de Carbono/análise , Óxido Nitroso/análise , Picea , Caules de Planta , Poluentes Atmosféricos/análise
2.
Sci Total Environ ; 809: 151723, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34801507

RESUMO

The carbon (C) budgets of riparian forests are sensitive to climatic variability. Therefore, riparian forests are hot spots of C cycling in landscapes. Only a limited number of studies on continuous measurements of methane (CH4) fluxes from riparian forests is available. Here, we report continuous high-frequency soil and ecosystem (eddy-covariance; EC) measurements of CH4 fluxes with a quantum cascade laser absorption spectrometer for a 2.5-year period and measurements of CH4 fluxes from tree stems using manual chambers for a 1.5 year period from a temperate riparian Alnus incana forest. The results demonstrate that the riparian forest is a minor net annual sink of CH4 consuming 0.24 kg CH4-C ha-1 y-1. Soil water content is the most important determinant of soil, stem, and EC fluxes, followed by soil temperature. There were significant differences in CH4 fluxes between the wet and dry periods. During the wet period, 83% of CH4 was emitted from the tree stems while the ecosystem-level emission was equal to the sum of soil and stem emissions. During the dry period, CH4 was substantially consumed in the soil whereas stem emissions were very low. A significant difference between the EC fluxes and the sum of soil and stem fluxes during the dry period is most likely caused by emission from the canopy whereas at the ecosystem level the forest was a clear CH4 sink. Our results together with past measurements of CH4 fluxes in other riparian forests suggest that temperate riparian forests can be long-term CH4 sinks.


Assuntos
Ecossistema , Árvores , Dióxido de Carbono/análise , Florestas , Metano , Solo
3.
Sci Total Environ ; 718: 135255, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31859058

RESUMO

The effects of soil succession after glacial retreat and fertilisation by marine animals are known to have major impacts on soil greenhouse gas (GHG) fluxes in polar terrestrial ecosystems. While in many polar coastal areas retreating glaciers open up new ground for marine animals to colonise, little is known about the combination of both factors on the local GHG budget. We studied the magnitude of GHG fluxes (CO2, CH4 and N2O) on the combined effect of glacial retreat and penguin-induced fertilisation along a transect protruding into the world's largest King Penguin (Aptenodytes patagonicus) colony at Saint Andrews Bay on sub-Antarctic South Georgia. GHG production and consumption rates were assessed based on laboratory incubations of intact soil cores and nutrients and water additional experimental incubations. The oldest soils along the transect show significant higher contents of soil carbon, nutrients and moisture and were strongly influenced by penguin activity. We found a net CH4 consumption along the entire transect with a marked decrease within the penguin colony. CO2 production strongly increased along the transect, while N2O production rates were low near the glacier front and increased markedly within the penguin colony. Controlled applications of guano resulted in a significant increase in CO2 and N2O production, and decrease in CH4 consumption, except for sites already strongly influenced by penguin activity. The results show that soil microbial activity promptly catalyses a turnover of soil C and atmospheric methane oxidation in de-glaciated forelands. The methane oxidizers, however, may increase relatively slowly in their capacity to oxidise atmospheric CH4. Results show also that the increase of nutrients by penguins reduces CH4 oxidation whereas N2O production is greatly increased. A future expansion of penguins into newly available ice-free polar coastal areas may therefore markedly increase the local GHG budget.


Assuntos
Spheniscidae , Animais , Regiões Antárticas , Dióxido de Carbono , Ecossistema , Gases de Efeito Estufa , Ilhas , Metano , Óxido Nitroso , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...