Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Crit Rev Toxicol ; 48(7): 555-574, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30226107

RESUMO

The aryl hydrocarbon receptor (AHR) is not essential to survival, but does act as a key regulator of many normal physiological events. The role of this receptor in toxicological processes has been studied extensively, primarily employing the high-affinity ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, regulation of physiological responses by endogenous AHR ligands remains to be elucidated. Here, we review developments in this field, with a focus on 6-formylindolo[3,2-b]carbazole (FICZ), the endogenous ligand with the highest affinity to the receptor reported to date. The binding of FICZ to different isoforms of the AHR seems to be evolutionarily well conserved and there is a feedback loop that controls AHR activity through metabolic degradation of FICZ via the highly inducible cytochrome P450 1A1. Several investigations provide strong evidence that FICZ plays a critical role in normal physiological processes and can ameliorate immune diseases with remarkable efficiency. Low levels of FICZ are pro-inflammatory, providing resistance to pathogenic bacteria, stimulating the anti-tumor functions, and promoting the differentiation of cancer cells by repressing genes in cancer stem cells. In contrast, at high concentrations FICZ behaves in a manner similar to TCDD, exhibiting toxicity toward fish and bird embryos, immune suppression, and activation of cancer progression. The findings are indicative of a dual role for endogenously activated AHR in barrier tissues, aiding clearance of infections and suppressing immunity to terminate a vicious cycle that might otherwise lead to disease. There is not much support for the AHR ligand-specific immune responses proposed, the differences between FICZ and TCDD in this context appear to be explained by the rapid metabolism of FICZ.


Assuntos
Carbazóis/metabolismo , Diferenciação Celular , Proliferação de Células , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Animais , Humanos
2.
Chem Rev ; 118(18): 9058-9128, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30191712

RESUMO

The indolocarbazoles are an important class of nitrogen heterocycles which has evolved significantly in recent years, with numerous studies focusing on their diverse biological effects, or targeting new materials with potential applications in organic electronics. This review aims at providing a broad survey of the chemistry and properties of indolocarbazoles from an interdisciplinary point of view, with particular emphasis on practical synthetic aspects, as well as certain topics which have not been previously accounted for in detail, such as the occurrence, formation, biological activities, and metabolism of indolo[3,2- b]carbazoles. The literature of the past decade forms the basis of the text, which is further supplemented with older key references.

3.
Chem Res Toxicol ; 29(1): 75-86, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26686552

RESUMO

Activation of the aryl hydrocarbon receptor (AhR), a conserved transcription factor best known as a target for highly toxic halogenated substances such as dioxin, under normal xenobiotic-free conditions is of considerable scientific interest. We have demonstrated previously that a photoproduct of tryptophan, 6-formylindolo[3,2-b]carbazole (FICZ), fulfills the criteria for an endogenous ligand for this receptor and proposed that this compound is the enigmatic mediator of the physiological functions of AhR. Here, we describe novel light-independent pathways by which FICZ can be formed. The oxidant H2O2 was shown to convert tryptophan to FICZ on its own in the absence of light. The enzymatic deamination of tryptamine yielded indole-3-acetaldehyde (I3A), which then rearranged to FICZ and its oxidation product, indolo[3,2-b]carbazole-6-carboxylic acid (CICZ). Indole-3-pyruvate (I3P) also produced I3A, FICZ, and CICZ. Malassezia yeast species, which constitute a part of the normal skin microbiota, produce a number of AhR activators from tryptophan. We identified both FICZ and CICZ among those products. Formation of FICZ from tryptophan or I3P produces a complex mixture of indole derivatives, some of which are CYP1A1 inhibitors. These can hinder the cellular clearance of FICZ and thereby increase its power as an AhR agonist. We present a general molecular mechanism involving dehydrogenations and oxidative coupling for the formation of FICZ in which I3A is the important precursor. In conclusion, our results suggest that FICZ is likely to be formed systemically.


Assuntos
Carbazóis/farmacologia , Citocromo P-450 CYP1A1/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Receptores de Hidrocarboneto Arílico/agonistas , Carbazóis/síntese química , Carbazóis/química , Citocromo P-450 CYP1A1/metabolismo , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Luz , Estrutura Molecular , Relação Estrutura-Atividade
4.
Chem Res Toxicol ; 28(12): 2278-86, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26535918

RESUMO

The mechanisms explaining arsenic toxicity are not well understood, but physiological consequences of stimulated aryl hydrocarbon receptor (AHR) signaling both directly and through cross-talk with other pathways have been indicated. The aim of this study was to establish how arsenic interacts with AHR-mediated transcription. The human hepatoma cell line (HepG2-XRE-Luc) carrying a luciferase reporter under the control of two AHR response elements (AHREs) and immortalized human keratinocytes (HaCaT) were exposed to sodium arsenite (NaAsO2; As(3+)), alone or in combination with the endogenous high affinity AHR ligand 6-formylindolo[3,2-b]carbazole (FICZ). Luciferase activity, cytochrome P4501A1 (CYP1A1) activity, oxidative stress-related responses, metabolic clearance of FICZ, and NADPH oxidase (NOX) activity as well as nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-dependent gene expression were measured. Arsenic inhibited CYP1A1 enzyme activity and reduced the metabolic clearance of FICZ. Arsenic also led to activated CYP1A1 transcription but only in cells grown in medium containing trace amounts of the endogenous ligand FICZ, pointing to an indirect mechanism of activation. Initially, arsenic caused dose-dependent inhibition of FICZ-activated AHR signaling, disturbed intracellular GSH status, and increased expression of oxidative stress-related genes. Silencing of NOX4, addition of N-acetylcystein, or pretreatment with arsenic itself attenuated the initial dose-dependent inhibition of AHR signaling. Arsenic pretreatment led to elevated GSH levels and sensitized the cells to ligand-dependent AHR signaling, while silencing of Nrf2 significantly reduced arsenic-mediated activation of the AHR. In addition, influence of NOX on AHR activation was also observed in cells treated with the SH-reactive metals cadmium, mercury, and nickel. Together, the results suggest that SH-reactive agents via a new and possibly general NOX/H2O2-dependent mechanism can interfere with the endogenous regulation of the AHR.


Assuntos
Arsênio/toxicidade , NADPH Oxidases/fisiologia , Receptores de Hidrocarboneto Arílico/efeitos dos fármacos , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Humanos , Queratinócitos/efeitos dos fármacos , Oxirredução , Reação em Cadeia da Polimerase , Transdução de Sinais/efeitos dos fármacos
5.
Cancer Cell Int ; 14(1): 118, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25493073

RESUMO

BACKGROUND: The inevitable side effects of the currently used chemotherapy are associated with serious syndromes. Genotoxic effects and consequent genetic instability may play an important role in these syndromes. The aim of the study was to evaluate chemotherapy-related microsatellite instability (MSI), loss of heterozygosity (LOH), and loss of mismatch repair (MMR) expression in solid tumor patients. METHODS: Samples were collected from 117 de novo patients with solid tumors of different origins. Specimens, taken pre- and post-treatment, were screened for MSI and LOH in 10 microsatellite sequences in blood, and expression of five MMR proteins were analyzed in cancer tissues using immunohistochemistry. Statistical analysis included the use of; Fisher's exact test, Chi Square, and an inter-rater reliability test using Cohen's kappa coefficient. RESULTS: Microsatellite analysis showed that 66.7% of the patients had MSI, including 23.1% high-positive MSI and 43.6% low-positive MSI. A large portion (41%) of the patients exhibited LOH in addition to MSI. MSI and LOH were detected in seven loci in which incidence rates ranged from 3.8% positive for Bat-26 to 34.6% positive for Tp53-Alu. Immunohistochemistry revealed that human mutL homolog 1 (hMLH1) expression was deficient in 29.1% of the patients, whereas 18.8%, 23.9%, 13.4%, and 9.7% were deficient for human mutS homolog 2 (hMSH2), P53, human mutS homolog 6 (hMSH6) and human post-meiotic segregation increased 2 (hPMS2), respectively. There was a significant correlation between MSI and LOH incidence in Tp53-Alu, Mfd41, and APC with low or deficient expression of hMLH1, hMSH2, and P53. A significant association between MSI and LOH, and incidence of secondary tumors was also evident. CONCLUSIONS: The negative correlation between MMR expression, MSI, and LOH and increased resistance to anti-cancer drugs and development of secondary cancers demonstrates a useful aid in early detection of potential chemotherapy-related side-effects. The diagnostic value demonstrated in our earlier study on breast cancer patients was confirmed for other solid tumors.

6.
Oncol Lett ; 6(5): 1413-1420, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24179534

RESUMO

Microsatellite instability (MSI) is a mutator phenotype that results from a defective mismatch repair (MMR) pathway. The present study examined the incidence of MSI and loss of heterozygosity (LOH) according to five markers from the panel of the National Cancer Institute (NCI) in 38 colorectal cancer (CRC) patients from the United Arab Emirates (UAE). MSI and LOH were analyzed using fragment analyses in a multiplex PCR setting on a capillary array electrophoresis platform. The expression of the MMR proteins, hMLH1 and hMSH2, was analyzed using immunohistochemistry. The cohort consisted of 17 females (44.7%) and 21 males (55.3%) with mean ages of 59.9 and 63.3 years, respectively. The overall MSI incidence was 31.3% (95% CI, 16.1-50.0), and included three patients with high MSI (MSI-H; 9.4%; 95% CI, 2.0-25.0) and seven patients with low MSI (MSI-L; 21.9%; 95% CI, 10.7-39). LOH was detected in three patients, while the remaining 25 patients (65.8%) showed no instability and were therefore classified as microsatellite stable (MSS). MSI was detected in the following screened markers: Bat25 in seven patients, Bat26 in three patients, adenomatous polyposis coli (APC; D5S346) in five patients, AFM093xh3 (D2S123) in two patients and Mfd15 (D17S250) in three patients. Of the five MSI-positive patients, four (80%) were evidently younger, aged 38, 48, 49 and 59 years, respectively. The MSI-H incidence (9.4%) was lower compared with that of other ethnic groups. In terms of the MMR proteins, hMLH1 expression was deficient in seven patients, of whom three were MSI-H patients, and hMSH2 was deficient in three patients. Fisher's exact test showed significant associations between hMLH1 and MSI when classified as MSS, MSI-L or MSI-H (P=0.0003). No such association was observed with abnormal MMR protein expression, age, cancer stage or gender.

7.
Chem Res Toxicol ; 25(9): 1878-84, 2012 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-22867086

RESUMO

Several polyphenols have been shown to activate the aryl hydrocarbon receptor (AHR) in spite of the fact that they bind to the receptor with low affinity. The aim of this study was to investigate whether quercetin (QUE), resveratrol (RES), and curcumin (CUR) interfere with the metabolic degradation of the suggested endogenous AHR ligand 6-formylindolo[3,2-b]carbazole (FICZ) and thereby indirectly activate the AHR. Using recombinant human enzyme, we confirmed earlier reported inhibitory effects of the polyphenols on cytochrome P4501A1 (CYP1A1) activity, and inhibition of metabolic clearance of FICZ was documented in FICZ-treated immortalized human keratinocytes (HaCaT). CYP1A1 activity was induced in HaCaT cells by all three compounds, and when they were added together with FICZ, a prolonged activation was observed after a dose-dependent inhibition period. The same pattern of responses was seen at the transcriptional level as determined with a CYP1A1 reporter assay in human liver hepatoma (HepG2) cells. To test the ability of the polyphenols to activate the AHR in the absence of FICZ, the cells were treated in medium, which in contrast to commercial batches of medium did not contain background levels of FICZ. Importantly, AHR activation was only observed in the commercial medium. Taken together, these findings suggest that QUE, RES, and CUR induce CYP1A1 in an indirect manner by inhibiting the metabolic turnover of FICZ. Humans are exposed to these compounds through the diet and nutritional supplements, and we propose that altered systemic levels of FICZ caused by such compounds may have physiological consequences.


Assuntos
Curcumina/química , Citocromo P-450 CYP1A1/antagonistas & inibidores , Quercetina/química , Receptores de Hidrocarboneto Arílico/agonistas , Estilbenos/química , Carbazóis/química , Carbazóis/metabolismo , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Curcumina/farmacologia , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Células Hep G2 , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Quercetina/farmacologia , Receptores de Hidrocarboneto Arílico/metabolismo , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Resveratrol , Estilbenos/farmacologia
8.
BMC Cancer ; 12: 373, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22928966

RESUMO

BACKGROUND: The aim of the study was to evaluate potential chemotherapy-induced microsatellite instability, loss of heterozygosity, loss of expression in mismatch repair proteins and associations with clinical findings in breast cancer patients, especially resistance to chemotherapy and/or development of other tumors in the four years following chemotherapy treatment. METHODS: A comprehensive study of chemotherapy-related effects with a follow-up period of 48 months post treatment was conducted. A total of 369 peripheral blood samples were collected from 123 de novo breast cancer patients. Microsatellite instability and loss of heterozygosity in five commonly used marker loci (including Tp53-Alu of the tumor suppressor gene TP53) were analyzed in blood samples. Sampling was conducted on three occasions; 4-5 weeks prior to the first chemotherapy session (pre-treatment), to serve as a baseline, followed by two consecutive draws at 12 weeks intervals from the first collection. Mismatch repair protein expression was evaluated in cancer tissues using immunohistochemistry for three mismatch-repair related proteins. RESULTS: A total of 70.7% of the patients showed microsatellite instability for at least one locus, including 18.6% marked as high-positive and 52.1% as low-positive; 35.8% showed loss of heterozygosity in addition to microsatellite instability, while 29.3% exhibited microsatellite stability. The following incidence rates for microsatellite instability and loss of heterozygosity were detected: 39.1% positive for Tp53-Alu, 31.1% for locus Mfd41, and 25.3% for locus Mfd28. A higher occurrence of loss of heterozygosity was noted with alleles 399 and 404 of Tp53-Alu. The mismatch repair protein expression analysis showed that the chemotherapy caused a loss of 29.3% in hMLH1 expression, and 18.7% and 25.2% loss in hMSH2 and P53 expression, respectively. A strong correlation between low or deficient hMSH2 protein expression and occurrence of mismatch repair/loss of heterozygosity events in Mfd41, Tp53-Alu, and Mfd28 was evident. A significant association between mismatch repair/loss of heterozygosity and incidence of secondary tumors was also established. CONCLUSION: Our results suggest that microsatellite instability, loss of heterozygosity, and deficiency in mismatch repair may serve as early prognostic factors for potential chemotherapy-related side effects in breast cancer patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Perda de Heterozigosidade , Instabilidade de Microssatélites , Adulto , Idoso , Distribuição de Qui-Quadrado , Reparo de Erro de Pareamento de DNA , Feminino , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Estudos Prospectivos
9.
Proc Natl Acad Sci U S A ; 109(12): 4479-84, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22392998

RESUMO

Altered systemic levels of 6-formylindolo[3,2-b]carbazole (FICZ), an enigmatic endogenous ligand for the aryl hydrocarbon receptor (AHR), may explain adverse physiological responses evoked by small natural and anthropogenic molecules as well as by oxidative stress and light. We demonstrate here that several different chemical compounds can inhibit the metabolism of FICZ, thereby disrupting the autoregulatory feedback control of cytochrome P4501 systems and other proteins whose expression is regulated by AHR. FICZ is both the most tightly bound endogenous agonist for the AHR and an ideal substrate for cytochrome CYP1A1/1A2 and 1B1, thereby also participating in an autoregulatory loop that keeps its own steady-state concentration low. At very low concentrations FICZ influences circadian rhythms, responses to UV light, homeostasis associated with pro- and anti-inflammatory processes, and genomic stability. Here, we demonstrate that, if its metabolic clearance is compromised, femtomolar background levels of this compound in cell-culture medium are sufficient to up-regulate CYP1A1 mRNA and enzyme activity. The oxidants UVB irradiation and hydrogen peroxide and the model AHR antagonist 3'-methoxy-4'-nitroflavone all inhibited induction of CYP1A1 enzyme activity by FICZ or 2,3,7,8-tetrachlorodibenzo-p-dioxin, thereby subsequently elevating intracellular levels of FICZ and activating AHR. Taken together, these findings support an indirect mechanism of AHR activation, indicating that AHR activation by molecules with low affinity actually may reflect inhibition of FICZ metabolism and raising questions about the reported promiscuity of the AHR. Accordingly, we propose that prolonged induction of AHR activity through inhibition of CYP1 disturbs feedback regulation of FICZ levels, with potential detrimental consequences.


Assuntos
Citocromo P-450 CYP1A1/química , Receptores de Hidrocarboneto Arílico/química , Animais , Carbazóis/química , Linhagem Celular Tumoral , Citocromo P-450 CYP1A1/antagonistas & inibidores , Feminino , Humanos , Peróxido de Hidrogênio/química , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Modelos Químicos , Oxidantes/química , RNA Mensageiro/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Raios Ultravioleta
10.
Bioorg Med Chem ; 17(4): 1648-53, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19186062

RESUMO

A series of thio- and selenopyrans having two fused indole units, structurally related to indolocarbazoles, have been prepared and evaluated for aryl hydrocarbon receptor (AhR) affinity, leading to the identification of several new significant AhR ligands. In particular, the parent thiopyrano[2,3-b:6,5-b']diindole and its derivative having a methyl group in the central ring, as well as the two corresponding selenopyrans, displayed the highest potencies of the compounds tested.


Assuntos
Indóis/química , Compostos Organosselênicos/química , Piranos/química , Receptores de Hidrocarboneto Arílico/química , Compostos de Sulfidrila/química , Animais , Carbazóis/química , Linhagem Celular Tumoral , Cobaias , Humanos , Indóis/síntese química , Indóis/metabolismo , Indóis/farmacologia , Estrutura Molecular , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/metabolismo , Compostos Organosselênicos/farmacologia , Piranos/síntese química , Piranos/metabolismo , Piranos/farmacologia , Receptores de Hidrocarboneto Arílico/metabolismo , Relação Estrutura-Atividade , Compostos de Sulfidrila/síntese química , Compostos de Sulfidrila/metabolismo , Compostos de Sulfidrila/farmacologia
11.
J Biol Chem ; 284(5): 2690-2696, 2009 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-19054769

RESUMO

Dioxins and other polycyclic aromatic compounds formed during the combustion of waste and fossil fuels represent a risk to human health, as well as to the well being of our environment. Compounds of this nature exert carcinogenic and endocrine-disrupting effects in experimental animals by binding to the orphan aryl hydrocarbon receptor (AhR). Understanding the mechanism of action of these pollutants, as well as the physiological role(s) of the AhR, requires identification of the endogenous ligand(s) of this receptor. We reported earlier that activation of AhR by ultraviolet radiation is mediated by the chromophoric amino acid tryptophan (Trp), and we suggested that a new class of compounds derived from Trp, in particular 6-formylindolo[3,2-b]carbazole (FICZ), acts as natural high affinity ligands for this receptor. Here we describe seven new FICZ-derived indolo[3,2-b]carbazole-6-carboxylic acid metabolites and two sulfoconjugates, and we demonstrate the following. (i) FICZ is formed efficiently by photolysis of Trp upon exposure to visible light. (ii) FICZ is an exceptionally good substrate for cytochromes P450 (CYP) 1A1, 1A2, and 1B1, and its hydroxylated metabolites are remarkably good substrates for the sulfotransferases (SULTs) 1A1, 1A2, 1B1, and 1E1. Finally, (iii) sulfoconjugates of phenolic metabolites of FICZ are present in human urine. Our findings indicate that formylindolo[3,2-b]carbazols are the most potent naturally occurring activators of the AhR signaling pathway and may be the key substrates of the CYP1 and SULT1 families of enzymes. These conclusions contradict the widespread view that xenobiotic compounds are the major AhR ligands and CYP1 substrates.


Assuntos
Carbazóis/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Inibidores Enzimáticos/metabolismo , Receptores de Hidrocarboneto Arílico/agonistas , Carbazóis/farmacologia , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Inibidores Enzimáticos/farmacologia , Humanos , Cinética , Especificidade por Substrato , Espectrometria de Massas em Tandem
12.
Environ Toxicol Chem ; 26(2): 208-17, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17713206

RESUMO

In this study, we examined 31 samples of varying chemical composition, including samples of soils from gasworks, coke production sites, and sites where wood preservatives were heavily used; ash and soot from municipal solid waste incinerators; antiskid sand; and dust from areas with heavy road traffic. The samples were comprehensively chemically characterized, especially their polycyclic aromatic compound contents, using gas chromatography-time-of-flight mass spectrometry, whereas their biological effects were assessed using dehydrogenase activity, root growth (Hordeum vulgare), reproduction of springtails (Folsomia candida), algal growth (Desmodesmus subspicatus), germinability (Sinapis alba), Vibrio fischeri, DR-CALUX, and Ames Salmonella assays. The number of compounds detected in the samples ranged from 123 to 527. Using the multivariate regression technique of partial-least-squares projections to latent structures, it was possible to find individual compounds that exhibited strong correlations with the different biological responses. Some of the results, however, indicate that a broader chemical characterization may be needed to identify all the compounds that may cause the measured biological responses.


Assuntos
Poluentes Ambientais/toxicidade , Cromatografia Gasosa-Espectrometria de Massas/métodos , Análise Multivariada
13.
Mutat Res ; 598(1-2): 132-43, 2006 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-16581091

RESUMO

Minisatellites are tandem repeat loci, with repeat units ranging in size from 5 bp to 100 bp. The total lengths of repeat arrays vary from about 0.5 kb to 30 kb, and excessive variability in allele length at human minisatellite loci is the result of germline-specific complex recombination events generating new length alleles. Minisatellite alleles also mutate to new lengths in somatic cells, but this occurs at a much lower rate than in the germline. Since recombination is involved in minisatellite mutation, the yeast Saccharomyces cerevisiae is a suitable model organism that has been employed to further dissect the molecular basis of mutation events at human minisatellites. These studies have shown that the mutational behaviour of a minisatellite in meiosis is not determined by the intrinsic properties of the repeat array, but are highly dependent on the position of the minisatellite in the genome. The processes for minisatellite mutation in yeast and humans are identical in the sense that mutation is indeed driven by meiotic recombination, but differ with regard to the types of structural changes that are generated by the recombination events. Tetrad analyses showed that inter-allelic transfers of repeats occur by conversion and not crossing over, and that several chromatids can be involved in successive recombination events in one meiosis, resulting in mutant alleles in several spores. It has been demonstrated that the genes SPO11 and RAD50, involved in the initiation of recombination events, are required for human minisatellite mutation in yeast meiosis. Intrinsic properties of the repeat array appear to determine the stability of human minisatellites in yeast mitosis, since mitotic mutation rates in yeast are highly variable between minisatellites. The repair genes RAD27 and DNA2 stabilise human minisatellites in yeast mitosis, while RAD5 has no effect on mitotic stability. MSH2 depresses human minisatellite frequency in meiotic cells of yeast.


Assuntos
Repetições Minissatélites/genética , Saccharomyces cerevisiae/genética , Cromátides/genética , Reparo do DNA , Humanos , Meiose , Modelos Moleculares , Mutagênese , Conformação de Ácido Nucleico , Saccharomyces cerevisiae/citologia , Transfecção
14.
Toxicol Sci ; 85(2): 935-43, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15788723

RESUMO

The presence of high affinity ligands for the aryl hydrocarbon receptor (AhR) in cell culture medium has generally been overlooked. Such compounds may confound mechanistic studies of the important AhR regulatory network. Numerous reports have described that light exposed cell culture medium induces AhR-dependent activity. In this study, we aimed at identifying the causative substance(s). A three-dimensional factorial design was used to study how the background activity of CYP1A1 in a rat hepatoma cell line (MH1C1) was controlled by photoproducts formed in the medium exposed to normal laboratory light. The light induced activity was found to be tryptophan dependent, but independent of riboflavin and other components in the medium. The light exposed medium showed the same transient enzyme inducing activity in vitro as the AhR ligand 6-formylindolo[3,2-b]carbazole (FICZ). This substance, which we have previously identified as being formed in UV-exposed tryptophan solutions, is a substrate for CYP1A1 and it has a higher AhR binding affinity than TCDD. Several tryptophan related photoproducts were detected in the light-exposed medium. For the first time one of the formed photoproducts was identified as FICZ with bioassay driven fractionation coupled with HPLC/MS. These results clearly show that tryptophan derived AhR ligands, which have been suggested to be endogenous AhR ligands, influence the background levels of CYP1A1 activity in cells in culture.


Assuntos
Carbazóis/farmacologia , Inibidores Enzimáticos/farmacologia , Indóis/farmacologia , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/química , Animais , Carbazóis/química , Carbazóis/efeitos da radiação , Linhagem Celular Tumoral , Meios de Cultura , Citocromo P-450 CYP1A1/biossíntese , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/efeitos da radiação , Indução Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/efeitos da radiação , Indóis/química , Indóis/efeitos da radiação , Luz , Neoplasias Hepáticas Experimentais/metabolismo , Fotoquímica , Fármacos Fotossensibilizantes/farmacologia , Dibenzodioxinas Policloradas/farmacologia , Ratos , Receptores de Hidrocarboneto Arílico/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/efeitos da radiação , Riboflavina/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Teratogênicos/farmacologia , Triptofano/metabolismo
15.
Chem Biol Interact ; 149(2-3): 151-64, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15501436

RESUMO

The physiological role of the aryl hydrocarbon receptor (AhR), a member of the basic helix-loop-helix PER-ARNT-SIM (PAS) transcription factor family is not known. We have suggested that the AhR is involved in light signaling through binding of photoproducts with high AhR affinity. This suggestion is based on (i) the high AhR affinity of the tryptophan photoproduct formylindolo[3,2-b]carbazole (FICZ), (ii) the induction of rapid and transient expression of AhR-regulated genes by FICZ and by extracts of UV-irradiated tryptophan as well as (iii) the fact that light induces the AhR-regulated cytochrome P450s CYP1A1, CYP1B1 and CYP2S1. The transient mRNA expression caused by light and tryptophan photoproducts suggests that the biotransformation enzymes induced by AhR activation take part in a metabolic degradation of the natural AhR ligand. This study aimed at identifying the involvement of phase I and phase II enzymes in the metabolic degradation of FICZ. A cytochrome P450-dependent metabolism of FICZ giving rise to preferentially mono- and di-hydroxylated derivatives has earlier been reported. In the present study, rat and human hepatic S9 mixes were employed together with specific enzyme inhibitors and cofactors. Compared to the Aroclor-induced rat liver S9, the non-induced rat liver S9 and the human liver S9 caused a more complex metabolite profile of FICZ. The CYP1A1 enzyme was confirmed to be the most important enzyme for the first step in the metabolism. CYP1A2 was found to have overlapping specificity with CYP1A1 being able to form the same major metabolites although with different kinetics. CYP1B1 turned out to be preferentially involved in the further metabolism of dihydroxylated metabolites. Microsomal epoxide hydrolase, and as yet not identified forms of sulphotransferases and glucuronosyltransferases were also found to take part in the metabolic degradation of FICZ. Thus, tryptophan photoproducts fit into a model in which the ligand-activated AhR signaling is autoregulated by the induced metabolic enzymes.


Assuntos
Carbazóis/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Indóis/metabolismo , Microssomos Hepáticos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Carbazóis/toxicidade , Cromatografia Líquida de Alta Pressão , Inibidores das Enzimas do Citocromo P-450 , Inibidores Enzimáticos/farmacologia , Humanos , Indóis/toxicidade , Masculino , Microssomos Hepáticos/enzimologia , Ratos , Ratos Sprague-Dawley , Triptofano/metabolismo
16.
Am J Hum Genet ; 72(6): 1436-47, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12748906

RESUMO

Minisatellite MS1 (locus D1S7) is one of the most unstable minisatellites identified in humans. It is unusual in having a short repeat unit of 9 bp and in showing somatic instability in colorectal carcinomas, suggesting that mitotic replication or repair errors may contribute to repeat-DNA mutation. We have therefore used single-molecule polymerase chain reaction to characterize mutation events in sperm and somatic DNA. As with other minisatellites, high levels of instability are seen only in the germline and generate two distinct classes of structural change. The first involves large and frequently complex rearrangements that most likely arise by recombinational processes, as is seen at other minisatellites. The second pathway generates primarily, if not exclusively, single-repeat changes restricted to sequence-homogeneous regions of alleles. Their frequency is dependent on the length of uninterrupted repeats, with evidence of a hyperinstability threshold similar in length to that observed at triplet-repeat loci showing expansions driven by dynamic mutation. In contrast to triplet loci, however, the single-repeat changes at MS1 exclusively involve repeat deletion, and can be so frequent--as many as 0.7-1.3 mutation events per sperm cell for the longest homogeneous arrays--that alleles harboring these long arrays must be extremely ephemeral in human populations. The apparently impossible existence of alleles with deletion-prone uninterrupted repeats therefore presents a paradox with no obvious explanation.


Assuntos
Deleção de Genes , Mutação em Linhagem Germinativa/genética , Repetições Minissatélites/genética , Alelos , Carcinoma/genética , Neoplasias Colorretais/genética , DNA Satélite/análise , Frequência do Gene , Genoma Humano , Células Germinativas , Heterozigoto , Homozigoto , Humanos , Masculino , Deleção de Sequência , Espermatozoides/fisiologia
17.
Drug Metab Dispos ; 31(2): 233-41, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12527705

RESUMO

The tryptophan photoproduct 6-formylindolo[3,2-b]carbazole (FICZ) exhibits the highest aryl hydrocarbon receptor (AhR) binding affinity reported so far. In different cells, in vitro, both extracts of UV-irradiated tryptophan and the synthesized pure compound FICZ induce a rapid and transient expression of AhR-regulated genes. The transient induction suggests that the biotransformation gene battery induced by AhR activation takes part in a metabolic degradation of the ligand, whereby a low steady-state level is regained. The down-regulation of AhR-regulated gene expression was previously shown to be dependent on cytochrome P450 1A1 (CYP1A1). Metabolism of FICZ generates five major metabolites, which appeared as three peaks (M1-M3) in the high performance liquid chromatography. The aim of the present study was to use rat liver S9 from Aroclor-pretreated rats to produce large enough quantities of FICZ metabolites for structure characterization and to determine their product precursor relationship. NMR analysis of large combined fractions of the metabolites indicated that M3 and M2 contained 2 isomers, respectively. By means of liquid chromatography-mass spectrometry (negative ion electrospray mode) and NMR spectroscopy (by (1)H-NMR, correlation spectroscopy, and nuclear Overhauser effect spectroscopy techniques) five metabolites of FICZ were identified, and their structures were elucidated. The molecular weights of the two M3 isomers were 300 and both M2 and M1 compounds demonstrated molecular weights of 316, corresponding to addition of one (M3) and of two oxygen (M2 and M1), respectively. The structures were assigned as 2- and 8-hydroxy (M3), 2,10- and 4,8-dihydroxy (M2) and 2,8-dihydroxy derivatives of indolo[3,2-b]carbazole-6-carboxaldehyde (6-formylindolo[3,2-b]carbazole).


Assuntos
Carbazóis/análise , Carbazóis/metabolismo , Indóis/análise , Indóis/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Citosol/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Microssomos Hepáticos/metabolismo , Ratos , Ratos Sprague-Dawley
18.
Curr Genet ; 41(5): 333-41, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12185499

RESUMO

The yeast Rad27 protein is homologous to mammalian Fen1 and is involved in the processing of replication intermediates. Enhanced instability of various artificial repetitive DNA sequences in RAD27-deficient yeast strains has been observed previously and shown to involve preferentially expansion mutations. In the present investigation, we characterised the mitotic instability of alleles of the naturally occurring human minisatellites MS1, MS32, MS205 and CEB1 and the modified MS1 alleles containing more highly homogeneous repeat regions than the original alleles. These minisatellites demonstrated more pronounced instability in rad27 Delta strains, with increases in the frequencies of both expansion and contraction mutants. In RAD27 strains, MS32 and MS205 were relatively stable, while MS1 and CEB1 were unstable, indicating that the effect of RAD27 on stability is influenced by intrinsic properties of the repeat array. This conclusion received further support from the remarkably high frequency of length-mutants observed for the modified allele of MS1. Thus, our findings emphasise the importance of: (1) comparing results obtained with various naturally occurring minisatellites and (2) manipulating their sequences in attempts to understand the molecular basis for mitotic stability/instability of minisatellite DNA.


Assuntos
Reparo do DNA/fisiologia , Endodesoxirribonucleases/fisiologia , Repetições Minissatélites , Saccharomyces cerevisiae/genética , Sequência de Bases , Endonucleases Flap , Genoma Fúngico , Humanos , Dados de Sequência Molecular , Organismos Geneticamente Modificados , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia
19.
J Mol Biol ; 319(2): 315-27, 2002 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-12051909

RESUMO

Certain minisatellites exhibit hypervariability with respect to the number of repeat units and, thus, allele length. Such polymorphism is generated by germline-specific recombinational events that occur at high frequencies and lead to the gain or loss of repeat units. In order to elucidate the molecular details of mutagenesis in minisatellites, we have integrated human minisatellites into the yeast genome in the vicinity of a hotspot for meiotic double-strand breaks (DSBs). Here, we describe the results of tetrad analyses of mutations in the human MS205 minisatellite in yeast strains heterozygous for alleles composed of 51 and 31 repeat units, as well as in a strain homozygous for the same 51 repeat unit allele. The length-mutation rate was twice as high in the heterozygous strain as in the homozygous strain, suggesting that sequence divergence between alleles enhances the generation of length mutations. In the case of heterozygotes, the frequency of length mutants resulting from inter-allelic exchange was significantly higher in tetrads with three viable spores than in tetrads with four viable spores, indicating that there is a higher probability for spore mortality in tetrads originating from meioses during which inter-allelic exchange of repeat units occurs. In an attempt to explain these findings, we propose a model for minisatellite mutation involving recombination, in which sequence divergence between alleles results in a heteroduplex containing numerous mismatches. We suggest that convergent mismatch-repair tracts in this heteroduplex give rise to a DSB that may be repaired by an additional round of recombination resulting in mutation of a third allele, or be lethal if such recombination fails. It appears probable that the formation of such additional mutants is the major explanation for the difference in meiotic length-mutation rates between the heterozygous and homozygous yeast strains, and that this phenomenon contributes to high germline length-mutation frequencies at minisatellites in humans.


Assuntos
Alelos , Genoma Fúngico , Meiose/genética , Repetições Minissatélites/genética , Mutação/genética , Recombinação Genética/genética , Saccharomyces cerevisiae/genética , Pareamento Incorreto de Bases/genética , Sequência de Bases , Troca Genética/genética , Frequência do Gene , Genes Letais/genética , Marcadores Genéticos/genética , Heterozigoto , Homozigoto , Humanos , Cinética , Modelos Genéticos , Dados de Sequência Molecular , Saccharomyces cerevisiae/citologia , Esporos Fúngicos/citologia , Esporos Fúngicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...