Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Conserv Physiol ; 12(1): coae042, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957844

RESUMO

Forest fragmentation and edge effects are two major threats to primate populations. Primates inhabiting fragmented landscapes must survive in a more degraded environment, often with lower food availability compared to continuous forests. Such conditions can have deleterious effects on animal physiological health, yet some primates thrive in these habitats. Here, we assessed how forest fragmentation and associated edge effects impact three different components of physiological health in a nocturnal primate community in the Sahamalaza-Iles Radama National Park, northwest Madagascar. Over two periods, 6 March 2019-30 October 2019 and 10 January 2022-17 May 2022, we collected data on body condition, fur condition scores and ectoparasite prevalence for 125 Mirza zaza, 51 Lepilemur sahamalaza, 27 Cheirogaleus medius and 22 Microcebus sambiranensis individuals, and we compared these metrics between core and edge areas of continuous forest and fragmented forest. Body condition scores for all species varied between areas, with a positive response to fragmentation and edge effects observed for M. zaza and L. sahamalaza and a negative response for C. medius and M. sambiranensis. Fur condition scores and ectoparasite prevalence were less variable, although M. zaza and L. sahamalaza had a significantly negative response to fragmentation and edge effects for these two variables. Interestingly, the impacts of fragmentation and edge effects on physiological health were variable-specific. Our results suggest that lemur physiological responses to fragmentation and edge effects are species-specific, and body condition, fur condition and ectoparasite prevalence are impacted in different ways between species. As other ecological factors, including food availability and inter/intraspecific competition, likely also influence physiological health, additional work is required to determine why certain aspects of lemur physiology are affected by environmental stressors while others remain unaffected. Although many nocturnal lemurs demonstrate resilience to fragmented and degraded habitats, urgent conservation action is needed to safeguard the survival of their forest habitats.

2.
Am J Primatol ; 86(1): e23569, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37899689

RESUMO

Deforestation and habitat fragmentation is the primary threat to primate populations. The primates that live within degraded and anthropogenically disturbed habitats typical of fragmented landscapes have to cope with lower availability of resources in comparison to primates in continuous, undisturbed forests. While some species are sensitive to forest fragmentation, some evidence exists to suggest that primates can alter their behavior and adapt to such changes, which enables their survival in suboptimal habitat. In this study, we assessed how forest fragmentation and its associated edge-effects impact the feeding ecology and activity levels of a nocturnal primate community in the Sahamalaza-Iles Radama National Park, North West Madagascar. From March 06, 2019 to May 17, 2022, we collected data on tree and invertebrate phenology at our study site, and feeding ecology and activity for 159 lemur individuals from four species. Fruit and flower availability varied significantly between continuous and fragmented forest, and between forest core and edge areas, with continuous forest exhibiting higher continuous fruit and flower availability. Lemur feeding ecology varied significantly too, as the feeding niches of all four species were significantly different between continuous and fragmented forest and between core and edge areas. However, lemur activity levels were mostly consistent among all forest areas. The results of this study suggest that nocturnal lemurs are able to adapt their dietary ecology in response to the available food sources within their habitat. Due to this flexible ecology and dietary plasticity, the lemurs do not need to significantly alter their behavior in different environments to fulfill their dietary needs. While nocturnal lemurs demonstrate adaptability and flexibility to degraded habitat, it is unclear how far this plasticity will stretch considering that Madagascar's forests are still being cleared at an alarming rate. Urgent conservation action is therefore needed to ensure the future of lemur habitat.


Assuntos
Lemur , Lemuridae , Strepsirhini , Animais , Lemur/fisiologia , Madagáscar , Ecologia , Lemuridae/fisiologia , Ecossistema , Florestas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...